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Abstract
Magnetic nanostructures, such as dots and dot arrays, nanowires, multilayers
and nanojunctions, are reviewed and compared with bulk magnets. The
emphasis is on the involved physics, but some applications are also outlined,
including permanent magnets, soft magnets, magnetic recording media,
sensors, and structures and materials for spin electronics. The considered
structural length scales range from a few interatomic distances to about
one micrometre, bridging the gap between atomic-scale magnetism and the
macroscopic magnetism of extended bulk and thin-film magnets. This leads to
a rich variety of physical phenomena,differently affecting intrinsic and extrinsic
magnetic properties. Some specific phenomena discussed in this review
are exchange-spring magnetism, random-anisotropy scaling, narrow-wall and
constricted-wall phenomena, Curie temperature changes due to nanostructuring
and nanoscale magnetization dynamics.
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1. Introduction

Thousands of years of human curiosity have led to the discovery of magnetism, and for many
centuries magnetism has stimulated progress in science and technology. For a long time,
the focus had been on macroscopic magnetism, as exemplified by the compass needle, by the
geomagnetic field and by the ability of electromagnets and permanent magnets to do mechanical
work. Atomic-scale magnetic phenomena, such as quantum-mechanical exchange [1–4],
crystal–field interaction [5] and relativistic spin–orbit coupling [6, 7], were discovered in
the first half of the last century and are now exploited, for example, in advanced permanent–
magnet intermetallics such as SmCo5 and Nd2Fe14B [8]. However, only in recent decades it
became clear that solid-state magnetism is, to a large extent, a nanostructural phenomenon.
The scientific and technological importance of magnetic nanostructures has three main reasons:

(i) there is an overwhelming variety of structures with interesting physical properties,
ranging from naturally occurring nanomagnets and comparatively easy-to-produce bulk
nanocomposites to demanding artificial nanostructures,

(ii) the involvement of nanoscale effects in the explanation and improvement of the properties
of advanced magnetic materials, and

(iii) nanomagnetism has opened the door for completely new technologies.

A naturally occurring biomagnetic phenomenon is magnetite (Fe3O4) nanoparticles
precipitated in bacteria, molluscs, insects and higher animals. Magnetostatic bacteria live
in dark environments and contain chains of 40–100 nm magnetite particles used for vertical
orientation [9]. Similar magnetite particles have been found in the brains of bees, pigeons
and tuna, and it is being investigated whether and how the particles serve as field sensors for
migration [10]. Magnetite and other oxide particles are also responsible for rock magnetism,
exploited for example in archaeomagnetic dating and for monitoring changes in the Earth’s
magnetic field [11, 12]. Due to dilution and incomplete saturation, the thermoremanent
magnetism of oxide particles in volcanic rocks is between 0.0001 and 1 µT, as compared to the
geomagnetic field of the order of 100 µT. Typical particle sizes, varying between less than 1 and
100 µm, are at the upper end of the structures of interest here, but the magnetization dynamics
in these particles is a nanoscale phenomenon. Smaller oxide particle sizes, less than 10 nm,
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Figure 1. Two schematic bulk nanostructures: (a) sintered Sm–Co and (b) magnetic clusters
(white) embedded in a matrix. The two structures are very different from the point of view of
size, geometry, origin and functionality. The Sm–Co magnets, consisting of a rhombohedral
Sm2Co17-type main phase (grey), a Cu-rich SmCo5-type grain-boundary phase (black) and a Zr-
rich hexagonal Sm2Co17-type platelet phase (white), are produced by a complicated annealing
process and widely used in permanent magnets [8, 26]. Nanostructures such as that shown in (b)
can be produced, for example, by mechanical alloying and are used as permanent magnets [27],
soft magnets [24] and magnetoresistive materials [28, 29].

are observed in gels having the nominal composition FeO(OH)·nH2O [13]. Fine particles are
also encountered in superparamagnetic systems [14], ferrofluids [15] and meteorites [16].

The further improvement of current magnetic materials heavily relies on nanostructuring.
This refers not only to materials such as permanent magnets, soft magnets and recording media
but also to emerging areas such as spin electronics. An example of improving the performance
of magnetic materials by nanostructuring is hard–soft permanent-magnet composites [8, 17–
22]. As analysed in [19], atomic-scale magnetism does not support substantial improvements
of permanent magnets beyond existing intermetallics such as SmCo5, Sm2Co17 and Nd2Fe14B,
but adding a soft phase to a hard phase in a suitable nanostructure improves the permanent-
magnet performance beyond that of the hard phase. This ‘metamaterials’ approach exemplifies
the materials-by-design strategy and makes it possible to produce materials not encountered in
nature. Other nanoscale effects are exploited in soft magnetic nanostructures, for example
in Fe73.5Si13.5B9Cu1Nb3 [23–25], where soft magnetic Fe3Si grains are embedded in an
amorphous matrix. Figure 1 shows two structures of interest in this context.

A fascinating approach is artificial nanostructuring to create completely new materials
and technologies. One area is the ever-progressing miniaturization in computer technology, as
epitomized by the use of nanostructured media for ultra-high density magnetic recording [30–
39]. A related area is spin electronics [40, 41], and various types of nanostructures,
such as multilayers and nanojunctions, are being investigated in this context. One
problem of current interest is spin injection into nonferromagnetic materials [42, 43]
and magnetic semiconductors [44, 45], whereas the use of spin degrees of freedom in
quantum computing [46, 47] remains a challenge to future research. Another area is
magnetoresistive sensors exploiting magnetoresistance effects in metallic thin films [48–
51], granular systems [28, 29, 52] and magnetic oxides [41, 53–55]. Some other
present or future applications are nanoparticle ferrofluids for cancer treatment, guided by
a magnet and delivering high local doses of drugs or radiation [56], micro-electromechanical
systems (MEMS) and other nanodevices, and nanoscale magnetic-force nanotips made from
PtCo [57, 58].

From a theoretical point of view, nanostructural phenomena are often described by
differential equations of the type ∇2φ − κ2φ = f (r), where κ−1 is an interaction length. This
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must be contrasted to the inhomogeneous Laplace (or Poisson) equation ∇2φ = f (r) which
implies long-range interactions and describes, for example, electrostatic and magnetostatic
phenomena. The interaction length reflects competition between different atomic energy
contributions. When the competition is between the electrons’ kinetic energy (hopping)
and electrostatic energies (Coulomb interaction and exchange), then κ−1 scales as kF or a0.
However, when the main competition involves relativistic interactions, then the interaction
length increases to l0 = a0/α, where α = 4πε0e2/h̄c ≈ 1/137 is Sommerfeld’s fine-structure
constant [8, 59]. An example is the competition between magnetocrystalline anisotropy and
exchange, because the spin–orbit coupling necessary to create anisotropy is a higher-order
relativistic correction to the leading electrostatic contributions. Length scales of the order of
l0 = 7.52 nm are indeed encountered in many nanomagnetic problems [8, 21, 59], indicating
that nanomagnetism goes beyond a ‘mixture’ of atomic and macroscopic physics.

A related question concerns the transition from nanoscale to macroscopic behaviour. How
many atoms are necessary to make a nanostructure indistinguishable from a bulk magnet? As
we will analyse below, the answer to this reduced-dimensionality problem depends not only on
the geometry of the structure but also on whether one considers intrinsic or extrinsic magnetic
properties. Intrinsic properties, such as the spontaneous magnetization Ms , the first uniaxial
anisotropy constant K1 and the exchange stiffness A, refer to the atomic origin of magnetism.
As a rule, intrinsic properties are realized on length scales of at most a few interatomic distances
and tend to approach their bulk values on a length scale of less than 1 nm, although there
are exceptions to this rule [8, 60]. Extrinsic properties, such as the remanence Mr and the
coercivity Hc, are nonequilibrium properties—related to magnetic hysteresis—and exhibit a
pronounced real-structure dependence [8, 61–63]. For example, the coercivity of technical iron
doubles by adding 0.01 wt% nitrogen [63]. Such small concentrations have little effect on the
intrinsic properties but lead to inhomogeneous lattice strains on a scale of many interatomic
distances, affecting the propagation of magnetic domain walls and explaining the observed
coercivity increase. Magnetic nanostructures exhibit a particularly rich extrinsic behaviour,
including phenomena such as random-anisotropy scaling [64], remanence enhancement [17],
micromagnetic localization [65], bulging-type nucleation modes [66] and a variety of grain-
boundary [67] and exchange-coupling effects [68, 69].

This review deals with the physics of magnetic nanostructures. Section 2 is devoted to the
geometrical aspect of nanomagnetism, introducing various types of nanostructures, section 3
focuses on the relation between atomic physics and nanomagnetism and section 4 investigates
nanoscale phenomena in a narrower sense. Section 5 discusses zero- and finite-temperature
dynamic effects, section 6 summarizes this work and draws some tentative conclusions. Finally,
the appendix summarizes some information on materials of interest in nanomagnetism.

2. Magnetic nanostructures

Advanced magnetic nanostructures are characterized by a fascinating diversity of geometries,
ranging from complex bulk structures (figure 1) to a broad variety of low-dimensional systems.
Figure 2 shows some examples. This section introduces typical geometries of interest in
nanomagnetism and outlines their key features; the division into subsections is somewhat
arbitrary, because many structures fit into two or more categories.

2.1. Particles and clusters

Various types of small magnetic particles exist in nature (section 1) or are produced artificially.
Fine-particle systems, such as Fe in Al2O3 with particle diameters of the order of 5 nm,
have been investigated over many decades [70]. So-called ‘elongated single-domain (ESD)
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Figure 2. Typical nanostructure geometries: (a) chain of fine particles, (b) striped nanowire, (c)
cylindrical nanowire, (d) nanojunction, (e) vicinal surface step, (f) nanodots, (g) antidots and (h)
particulate medium.

particles’ [71] are used, for example, in magnetic recording. The properties of particles are
also of interest for the investigation of nanowires (section 2.4), dot arrays (section 2.3) and
thin-film (section 2.2) and bulk (section 2.5) composites. A crude criterion for the survival of
the individuality of dots, particles and clusters in complex nanostructures is the strength of the
exchange and magnetostatic interparticle interactions (section 4.7).

Interesting applications of small particles are stable colloidal suspensions known as
ferrofluids [15, 72]. A variety of materials can be used, such as Fe3O4, BaFe12O19, Fe, Co and
Ni, and a typical particle size is 10 nm. Most ferrofluids are based on hydrocarbons or other
organic liquids, whereas water-based ferrofluids are more difficult to produce. They are used
as liquids in bearings and to monitor magnetic fields and domain configurations.

Very small nanoparticles are also known as clusters. Their production by various
techniques and typical structural properties have been reviewed by Sellmyer et al [39]. In
both free and embedded clusters, nanoparticle effects are particularly important. First, the
large surface-to-volume ratio of clusters leads to a comparatively strong diameter dependence
of the intrinsic properties such as anisotropy [73] and magnetization [74]. Second, clusters
tend to be superparamagnetic [14, 75], particularly at high temperatures (section 5.3).

The ground-state domain configuration and the mechanism of magnetization reversal in
small magnetic particles [75–80] depend on the particle size. At the macroscopic end of
the range there are, e.g., arrays of (110) Fe dots on sapphire, having a thickness of about
50 nm and lateral dimensions of the order of 1 µm [78]. Such dots are characterized by flux
closure [78, 81]. In contrast, clusters are single-domain magnets (section 4.2) and their reversal
starts by coherent rotation (section 4.3).

2.2. Thin films and multilayers

Many magnetic thin films and multilayers [51, 82–87] can be considered as nanostructures,
but since thin-film magnetism has developed into a separate branch of condensed matter
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Figure 3. An example of high resolution TEM from 5.6 nm Co clusters produced in our system.
(Courtesy D J Sellmyer.)

physics, a comprehensive introduction to these structures goes beyond the scope of this work.
Nanostructured thin films with intermediate or high coercivities [20, 21, 88, 89] have been
studied in the context of permanent magnetism and magnetic recording.

Thin-film structures exhibit a number of interesting properties. Examples are anisotropies
of ideal and vicinal surfaces and of interfaces [84, 90, 91],moment modifications at surfaces and
interfaces [92, 93], thickness-dependentdomain-wall and coercive phenomena [59, 82, 86, 94],
interlayer exchange coupling [48–50] and finite-temperature magnetic ordering [95]. Two
specific examples are the nanoscale exchange-coupling or ‘exchange-spring’ effects in
multilayers [18, 19, 88, 96–99] and the pinning of domain walls in sesquilayer iron–tungsten
thin films [86].

2.3. Particle arrays and functional components

Two-dimensional arrays of nanoparticles are interesting scientific model systems with many
present or future applications. In particular, advanced magnetic recording media can be
characterized as a complex array of magnetic particles, and interest in dot arrays [30, 75, 100–
104] has been sparked by the search for ever-increasing storage densities in magnetic recording.
In very small dots, quantum-mechanical effects are no longer negligible and there are
phenomena such as quantum-well states. Quantum-dot effects are of interest in quantum
computing and spin electronics [51, 105].

There are many methods for producing nanoparticle arrays [38, 51, 106]. A traditional,
though somewhat cumbersome, method to produce periodic arrays of nanoscale magnetic
particles, dots and wires is nanolithography [107, 108]. Other examples are molecular-
beam epitaxy [109], the use of STMs [110], chemical vapour deposition [101] and
e-beam nanolithography [107, 108]. The call for well-characterized large-area arrays of
nanoparticles has stimulated the search for advanced production methods such as laser-
interference lithography (LIL), where laser-intensity maxima effect a local decomposition
of a nonferromagnetic material into ferromagnetic islands [103]. Another development is the
use of ion beams [34, 111], for example focused ion-beam (FIB) milling [111], to create small
particles and particle arrays with well-defined properties.

Most easily produced and investigated are submicron dots made from iron-series transition
metals, such as Ni [101], but it is also possible to use intermetallics, such as permalloy [81, 112],
and to reduce the dot size to less than 100 nm. The arrays may be square or hexagonal, or
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Figure 4. Advanced MFM tips made by (a) ion milling, (b) electron beam deposition, (c) FIB
milling. (Courtesy S-H Liou.)

the dots may form other structures such as corrals. Among the investigated phenomena are
the properties of individual dots and interdot interactions [46, 112, 113]. A related class of
nanostructures is antidots, that is, holes in a film rather than dots on a film [109, 114, 115].
Antidots exhibit interesting resistive and magnetoresistive properties [114], but magnetic
domains in antidots have been studied too [115]. Potential applications include magnetic
recording, sensors, magnetic and quantum computing,micron- and submicron-size mechanical
devices, short-wavelength optics and spin electronics. In section 4 we will discuss some
magnetic properties of dots and dot arrays.

Other functional structures are, for example, nanojunctions [40, 116], spin valves
(section 5.5) and tips for magnetic-force microscopy (MFM tips). Figure 4 shows three MFM
tips made by various techniques [57]. Some properties of nanojunctions and spin valves will
be discussed in sections 4.4 and 5.5.

2.4. Nanowires

There is a smooth transition from elongated dots and thin-film patches [117, 118] to
nanowires [38, 119–121]. Magnetic nanowires are scientifically interesting and have potential
applications in many areas of advanced nanotechnology, including patterned magnetic media,
magnetic devices and materials for microwave applications. Thin-film nanowires, such as
in figure 2(b), are comparatively easily obtained by depositing magnetic materials on vicinal
surfaces [51, 117] and by exploiting structural anisotropies of the substrate [86]. They can
be produced with thicknesses down to one or two monolayers. Electrodeposition of magnetic
materials into porous alumina may be used to produce regular wire arrays [38, 119, 121]. Other
ways of fabricating cylindrical nanowires include the deposition into molecular sieves [38, 122–
125], track-etched polymer membranes [126, 127] and mica templates [128].

By electrodeposition into porous anodic alumina [124, 129, 130] it is now possible to
produce Fe, Co and Ni wires with diameters ranging from 4 to 200 nm, depending on the
anodization conditions, and lengths of up to about 1 µm [38, 106, 119, 121, 131–135].
Typically, the nanowires form nearly hexagonal columnar arrays with variable centre-to-centre
spacings of the order of 50 nm [38, 121, 131, 135]. The resulting materials are of interest as
magnetic recording media [132, 136], for optical and microwave applications [137, 138] and
as electroluminescent display devices [139]. Aside from the above-mentioned iron-series
transition-metal elements, there is interest in depositing alloys and multilayers, such as Fe/Pt,
into porous templates [38, 140, 141]. On the other hand, magnetoresistive effects have been
investigated in electrodeposited Co–Cu alloy nanowires [142] and Co–Ni–Cu/Cu multilayered
nanowires [143].
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Much of the early work on magnetic nanowire arrays was concerned with exploratory
issues, such as establishing an easy axis for typical preparation conditions, the essential
involvement of shape anisotropy, as opposed to magnetocrystalline anisotropy, and the
description of magnetostatic interactions between wires (see, e.g., [38, 127, 135, 144] and
references therein). More recently, attention has shifted towards the understanding of
magnetization processes [145–147]. On a nanometre scale, interatomic exchange is no longer
negligible compared to magnetostatic interactions. This leads to a transition from curling-type
to quasi-coherent nucleation (section 4.3). For Fe, Co and Ni, the corresponding diameters
are about 11, 15 and 25 nm, respectively, irrespective of the critical single-domain radius [8].
Furthermore, in section 4.6 we will see that the reversal behaviour is affected by the deposition-
dependent polycrystallinity [38] of typical transition-metal nanowires [148]. Some other
interesting phenomena are magnetic-mode localization (section 4.7), as evident, e.g., from
experimental activation volumes (section 5.3), spin waves (section 5.2) and current-induced
magnetization reversal [149].

2.5. Nanocomposites and other bulk materials

Embedded clusters, granular materials and other bulk nanostructures are of great importance
in nanoscience. The structural correlation lengths of typical nanocomposite materials range
from about 1 nm in x-ray amorphous structures to several 100 nm in submicron structures
and can be probed, for example, by small-angle neutron scattering (SANS) [150] and electron
microscopy [21]. Magnetic glasses [13, 151] and atomic-scale defect structures are beyond
the scope of nanomagnetics, but they are of indirect interest as limiting cases and because
nanomagnetic phenomena have their quantum-mechanical origin in atomic-scale magnetism.

Structures similar to figure 1(b) can be produced by methods such as mechanical
alloying [152] and chemical reactions [27, 153]. Depending on grain size and microchemistry,
they are used, for example, as permanent magnets (Nd–Fe–B), soft magnets (Fe–Cu–Nb–
Si–B) and magnetoresistive materials (Co–Ag). There are two types of exchange-coupled
permanent magnets: isotropic magnets [17, 154–158], which exhibit random anisotropy and
remanence enhancement (section 4.6), and oriented hard–soft composites [19, 21, 88], which
utilize exchange coupling of a soft phase with a high magnetization to a hard skeleton. Closely
related systems with many potential applications are magnetic clusters deposited in a matrix.
For example, the narrow size distribution of 10–20% makes this material interesting as a
granular media for magnetic recording [39]. A well-known soft magnetic nanocomposite is
the ‘Yoshizawa’ alloy Fe73.5Si13.5B9Cu1Nb3 [23, 159], which consists of iron–silicon grains
embedded in an amorphous matrix. The Fe–Si nanocrystallites, which provide most of the
magnetization, crystallize in the cubic DO3 structure and have a composition close to Fe3Si.

Nanoscale composites must be distinguished from amorphous metals (magnetic glasses)
and spin glasses, whose exchange and anisotropy disorder is on an atomic scale [13, 151, 160–
162]. However, the boundary is smooth and spin glasses and amorphous materials exhibit
various nanostructural phenomena. On the other hand, spin-glass-like phenomena are observed
in some nanostructures. For example, interacting particles give rise to spin-glass-like (cluster-
glass) dynamics [70, 163] and isotropic nanostructures can be considered as random-anisotropy
magnets [164].

3. Atomic-scale effects

Intrinsic magnetic properties, such as magnetization and anisotropy, are determined on an
atomic scale. For example, the magnetization of α-Fe, µ0 Ms = 2.15 T, is associated with the
body-centred cubic structure of elemental iron. However, some intrinsic effects are realized
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on a length scale of several interatomic distances. Examples are Ruderman–Kittel–Kasuya–
Yosida (RKKY) interactions between localized moments embedded in a Pauli paramagnetic
matrix and the disproportionally strong contribution of surface and interface atoms to the
magnetic anisotropy of nanostructures.

3.1. Magnetic moment

The magnetic moment m of solids nearly exclusively originates from the electrons in partly
filled inner electron shells of transition-metal atoms. Of particular importance are the iron-
series transition-metal or 3d elements Fe, Co and Ni and the rare-earth or 4f elements, such as
Nd, Sm, Gd and Dy. Palladium series (4d), platinum series (5d) and actinide (5f) atoms have
a magnetic moment in suitable crystalline environments. There are two sources of the atomic
magnetic moment: currents associated with the orbital motion of the electrons and the electron
spin. The magnetic moment of iron-series transition-metal atoms in metals (Fe, Co, Ni, YCo5)
and nonmetals (Fe3O4, NiO) is largely given by the spin and the moment, measured in µB , is
equal to the number of unpaired spins. For example, Fe2+ (ferrous iron) has four unoccupied
3d ↓ orbitals, so that the moment per ion is 4 µB . The orbital moment is very small, typically
of the order of 0.1 µB , because the orbital motion of the electrons is quenched by the crystal
field [8, 165, 166]. In contrast, rare-earth moments are given by Hund’s rules, which predict
the spin and orbital moment as a function of the number of inner-shell electrons [165].

The moment per atom is largely determined by intra-atomic exchange. Exchange is an
electrostatic many-body effect, caused by 1/|r − r′| Coulomb interactions between electrons
located at r and r′. Physically, ↓↑ electron pairs in an atomic orbital are allowed by the Pauli
principle but are unfavourable from the point of view of Coulomb repulsion. In the case of
parallel spin alignment, ↑↑, the two electrons are in different orbitals, which is electrostatically
favourable, but the corresponding gain in Coulomb energy competes against an increase
in one-electron energies. (Only one electron benefits from the low ground-state energy—
the second electron must occupy an excited one-electron level.) The magnetic moments of
insulating transition-metal oxides and rare-earth metals are located on well-defined atomic
sites. However, in Fe, Co and Ni, as well as in many alloys, the moment is delocalized or
itinerant. Itinerant ferromagnetism is characterized by non-integer moments and explained
in terms of the metallic band structure [167–170]. Nonmagnetic metals (Pauli paramagnets)
have two equally populated ↑ and ↓ subbands; an applied magnetic field may transfer a few
electrons from the ↓ band to the ↑ band, but the corresponding spin polarization is very small,
of the order of 0.1%. Itinerant ferromagnetism is realized by narrow bands, where the intra-
atomic exchange is stronger than the bandwidth-related gain in single-electron hybridization
(Stoner criterion).

Atomic magnetic moments are affected by several nanoscale mechanisms. First,
nonmagnetic atoms may become spin-polarized by neighbouring ferromagnetic atoms. A
semiquantitative description of these effects is provided by the Landau–Ginzburg type [171]
expression

−A2∇2 M + A0 M = Hex(r). (3.1)

Here M(r) is the induced magnetization (moment per unit volume), Hex is the intra-atomic
exchange field and A0 and A2 describe the electronic properties of the system. Essentially,
χ(k, T ) = 1/(A0 +k2 A2) is the wavevector-dependent exchange-enhanced spin susceptibility,
which is known for a variety of systems [172]. Equation (3.1) predicts an exponential decay
of the magnetization with a decay length of 1/κ = (A2/A0)

1/2. In simple metals, κ scales as
the Fermi wavevector (κ ∼ kF) and ferromagnetism is difficult to induce. However, exchange
enhanced Pauli paramagnets, such as Pd and Pt, are very close to satisfying the Stoner criterion,
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Figure 5. Intrinsic properties of multilayered Pt–Fe structures (after [169]).

so that A0 and κ are small [8, 172]. A similar A0 reduction is encountered in semiconductors
[44] and in semimetals such as Sb, where the decay length is of the order of 1 nm [173].

Nanoscale moment modifications are important at surfaces and interfaces [173, 174], but
they do not extend very far into the bulk. By definition, Bloch wavefunctions extend to infinity,
but nanoscale finite-size effects yield only small corrections to the metallic moment. This can
be seen, for example, from real-space approaches based on the moment’s theorem [8, 175–
178]. When only nearest neighbours are taken into account, these methods yield the correct
bandwidth but ignore details of the band structure, such as peaks in the density of states.
Increasing the number of neighbours improves the resolution of the density of states and
makes it possible to distinguish between bulk sites and sites close to surfaces. Figure 5 shows
the modification of the moment and of the effective interatomic exchange in multilayered Fe–Pt
magnets, as obtained from first-principle electronic-structure calculations [169].

As a rule, nanoscale intrinsic phenomena are caused by small differences between atomic
interaction energies. In terms of (3.1), this occurs when A0 ≈ 0 due to competing hopping
and intra-atomic exchange energies. A loosely related phenomenon, observed for example in
rare-earth elements and alloys, is noncollinear spin structures [13]. Helimagnetic rare-earth
noncollinearity is characterized by k vectors depending on the ratio of the nearest- and next-
nearest-neighbour exchange (section 3.2), and k may be, in principle, a very small fraction
of kF . Even more complicated spin arrangements are possible in disordered magnets with
competing interatomic exchange interactions (spin glasses) and at surfaces and interfaces.
Furthermore, surface states [51, 178] modify the magnetic moment of surface atoms [51, 174].
Another type of noncollinearity is caused by spin–orbit coupling. The orbit of an electron,
and therefore its crystal-field interaction, depend on the spin direction, so that electrons
on sites without inversion symmetry can minimize the crystal-field energy by forming a
slightly noncollinear spin structure. In spin glasses, this is known as Dzyaloshinskii–Moriya
interaction [151], but the same effect occurs in other low-symmetry structures [179].

Noncollinear states must not be confused with micromagnetic structures, such as
domains and domain walls (section 4.2). For example, small particles may exhibit some
noncollinearity due to competing exchange, particularly at the surface, but an applied
magnetic field merely changes the direction of the net magnetization, leaving the atomic-
scale noncollinear correlations 〈M(ri ) · M(r j )〉 unchanged. By contrast, micromagnetic
magnetization processes, such as domain-wall motion, change the relative magnetization
directions of well-separated spins in comparatively small magnetic fields.

3.2. Magnetization and magnetic order

In a strict sense, ferromagnetism is limited to infinite magnets, because thermal excitations
in finite magnets cause the net moment to fluctuate between opposite directions. In
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practice, it is difficult to distinguish the magnetism of particles larger than about 1 nm from
true ferromagnetism, because interatomic exchange ensures well-developed ferromagnetic
correlations inside the particles. Similar arguments apply to other nanostructures, such as
wires [117]. The interatomic exchange ensures not only zero- and finite-temperature magnetic
order and exchange stiffness (section 4.2) but also finite-temperature magnetocrystalline
anisotropy (section 3.3).

Compared to the intra-atomic Hund’s rules exchange, which is always positive, the sign of
the interatomic exchange constant J is difficult to predict. In ferromagnets, such as Fe, Co and
Nd2Fe14B, J is positive, and at zero temperature all spins are parallel. Ferrimagnets, such as
Fe3O4 and BaFe12O19, and antiferromagnets, such as cobaltous oxide (CoO) and MnF2, involve
negative exchange constants and are characterized by two (or more) sublattices with opposite
moments [165, 180]. Sublattice formation may be spontaneous, as in typical antiferromagnets,
or linked to the atomic composition, as in ferrimagnets.

Oxides are often antiferromagnets, but when the interatomic hopping integral is zero by
symmetry, as in CrO2, then the direct exchange gives rise to ferromagnetism (Goodenough–
Kanamori rules) [8]. A widely used phenomenological approach to discuss interatomic
exchange is the Heisenberg interaction −J Ŝ1 · Ŝ2 between neighbouring atomic spins Ŝ1

and Ŝ2. One example is the RKKY interaction J ∼ cos(2kF R)/R3 between atomic moments
embedded in a free-electron gas of Fermi wavevector kF [181]. For magnetic nanoparticles
embedded in a nonmagnetic metallic matrix, the oscillating character of the RKKY interaction
does not mean that it averages to zero, but the net increase with increasing particle size is
comparatively weak, and for particles larger than about 1 nm the net RKKY interaction is less
pronounced than the magnetostatic interaction [182, 183].

In ferromagnets, the competition between interatomic exchange and thermal disorder leads
to the vanishing of the spontaneous magnetization at a well-defined sharp Curie temperature
TC . The total interatomic exchange per atom does not exceed about 0.1 eV, corresponding to
TC ≈ 1000 K. This is much smaller than the intra-atomic exchange, which is of the order
of 1 eV, so that atomic moments at TC remain close to their zero-temperature values1 and
typical magnetization processes in solids are caused by magnetization rotations. On the other
hand, the ratio µB/kB = 0.672 K T−1 means that magnetostatic fields in solids, of the order
of 1 T, are of little consequence to the problem of room-temperature magnetic order. To
determine the spontaneous magnetization Ms(T ) it is sufficient to know the partition function
Z = �µexp(−Eµ/kB T ), but the number of configurations µ increases exponentially with the
size of the magnet, and only in a few cases do there exist exact solutions [184]. On a mean-field
level, the magnetization is derived from the Hamiltonian −µB Hex Sz , where Hex ∼ J is the
average exchange field and Sz = −S, . . . , S − 1, S. The partition function is a sum over all
values of Sz , and taking into account that Hex is proportional to Ms(T ) then yields a self-
consistent mean-field equation for Ms . Below the Curie temperature TC ∼ J , the mean-field
equation has two ferromagnetic solutions ±Ms (T ), whereas above TC the magnetization is
zero. The mean-field model is easily generalized to two or more sublattices; for N sublattices
(or N non-equivalent atomic sites) it yields N coupled algebraic equations [60, 185].

The mean-field model does not work very well at low temperatures, where Ms is
determined by spin waves (section 5.2), and close to TC , where long-range critical fluctuations
interfere [184, 186, 187]. The mean-field approach leads, for example, to the physically
unreasonable prediction of ferromagnetism in one dimension [186, 187]. In terms of
expansions of the type (3.1), critical phenomena are described by diverging correlation lengths

1 There are a few exceptions, such as very weak itinerant ferromagnets (for example ZrZn2) and low-spin high-spin
transition in fcc iron.



R852 Topical Review

Figure 6. Spontaneous magnetization of inhomogeneous magnets: (I) macroscopic mixture, (II)
nanostructure and (III) alloy. In alloys and nanostructures, there is only one Curie temperature,
although the Ms (T ) curves of nanostructures exhibit a two-phase-like inflection whose curvature
may be difficult to resolve experimentally.

ξ ≈ 1/κ . They scale as ξ ∼ 1/|T − TC |ν , where ν is a critical exponent [188]. Critical
exponents depend on the dimensionality of the magnet [95, 117, 184, 187, 189], and in
nanostructures there exist various finite-size [128, 190–193] and surface [95, 173, 194, 195]
corrections.

An interesting problem is the Curie temperature of composite nanostruc-
tures [60, 191, 196–199]. Using a super-cell mean-field approach, Ma and Tsai [196] estimated
that the Curie temperature of an equiatomic multilayer reaches about 80% of the maximum
Curie temperature for layer periodicities of four monolayers. In other words, two layers of
a magnetic material are sufficient to realize about 80% of the bulk TC . In disordered nanos-
tructures, the mean-field Curie temperature is obtained by diagonalizing a multi-sublattice
interaction matrix [60]. Disordered two-phase nanostructures have a single common Curie
temperature close to the Curie temperature of the phase with the strongest exchange cou-
pling. Figure 6 illustrates this point by showing Ms (T ) curves for different nanostructures. A
loosely related intrinsic proximity mechanism has been proposed to explain the existence of
ferromagnetic carbon in a meteorite [16].

When the grain size is larger than a few interatomic distances then the Ms(T ) curve of an
inhomogeneous ferromagnet is difficult to distinguish from a mixture of macroscopic phases.
The reason is that the perturbations decay as exp(−R/ξ) and ξ is very small, except for the
immediate vicinity of TC [60]. This example shows that intrinsic properties are realized on
fairly small length scales, even if the range of critical fluctuations goes to infinity. It also
explains why many two-phase nanostructures, such as the multilayers investigated in [200],
mimic the coexistence of two independent magnetizations. An alternative but equivalent
explanation is that exchange-energy differences associated with long-range fluctuations are
quite small and cannot compete against nanoscale local features. A different approach is to
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parametrize the effect of a region with reduced Curie temperature in terms of an effective
exchange stiffness. This approach has led to the concept of exchange-field penetration active
over distances of the order of 5 nm [201], giving rise to an appreciable Curie temperature
enhancement [202]. However, these large values cannot be understood in terms of two-phase
nanostructures [60] and probably reflect imperfections such as impurities and percolating
bridges.

3.3. Anisotropy

The energy of a magnetic solid depends on the orientation of the magnetization with respect
to the crystal axes, which is known as magnetic anisotropy. Permanent magnets need a high
magnetic anisotropy in order to keep the magnetization in a desired direction. Soft magnets are
characterized by a very low anisotropy, whereas materials with intermediate anisotropies are
used as magnetic recording media. In terms of the magnetization angles φ and θ , the simplest
anisotropy-energy expression for a magnet of volume V is Ea = K1V sin2 θ . This anisotropy
is known as lowest-order (or second-order) uniaxial anisotropy and K1 is the first uniaxial
anisotropy constant. It is often convenient to express anisotropies in terms of anisotropy fields.
For example, the expression Ea = K1V sin2 θ yields Ha = 2K1/µ0 Ms .

For magnets of low symmetry (orthorhombic, monoclinic and triclinic), the lowest-order
anisotropy energy is

Ea = K1V sin2 θ + K ′
1V sin2 θ cos(2φ) (3.2)

where K1 and K ′
1 are, in general, of comparable magnitude. This expression must also be used

for magnets having a low-symmetry shape, such as ellipsoids with three unequal principal
axes, for a variety of surface anisotropies, such as that of bcc (011) surfaces [86], and for
nanoparticles with random surfaces. For arbitrary easy axis directions n, as encountered for
example in polycrystalline materials, the expression K1 sin2 θ must be replaced by −K1(n·s)2.

Higher-order anisotropy expressions contain, in general, both uniaxial and in-plane terms.
For example,

Ea

V
= K1 sin2 θ + K2 sin4 θ + K ′

2 sin4 θ cos 4φ (3.3)

contains second- and fourth-order terms and describes tetragonal, hexagonal, rhombohedral
and cubic crystals. Hexagonal and rhombohedral crystals are characterized by K ′

2 = 0, whereas
in the tetragonal case K2 and K ′

2 are of the same order of magnitude. In cubic crystals, K1,
K2 and K ′

2 are all of higher order, and only two of these three constants are independent [8].
A common expression for cubic anisotropy is

Ea

V
= K1(s

2
x s2

y + s2
y s2

z + s2
x s2

z ) + K (c)
2 s2

x s2
y s2

z (3.4)

where K (c)
2 	= K2 is the second cubic anisotropy constant [8]. For some other anisotropy

expressions see, for example, [8, 203, 204].
Competing anisotropies give rise to spin structures such as easy-cone magnetism, where

the magnetization forms an angle θc = arcsin(|K1|/2K2) with the c axis. Since the temperature
dependences of K1 and K2 are generally different (K2 is often negligible at high temperatures),
the preferential magnetization direction may change as a function of temperature (spin-
reorientation transition). A similar film-thickness-dependent transition is observed in films
where surface and bulk anisotropy contributions compete.

Figure 7 illustrates the physical origin of coercivity. Small ellipsoidal particles exhibit
shape anisotropy

K1,sh = µ0

4
(1 − 3D)M2

s (3.5)
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Figure 7. Physical origin of magnetic anisotropy: (a–c) compass-needle analogy of shape
anisotropy and (d) magnetocrystalline anisotropy. From the point of view of magnetostatic
interaction, (a) is more favourable than (b), so that the easy magnetization direction of a small
elongated particle is parallel to the long axis. In a macroscopic magnet this mechanism is ineffective,
because domain formation (c) interferes. The arrow in (d) shows the spin direction of the central
atom.

where D = Dz is the ellipsoid’s demagnetizing factor (D = 0 for long cylinders, D = 1/3 for
spheres and D = 1 for plates) [205]. Shape anisotropy is important in magnetic nanostructures
made from soft magnetic materials, for example in Fe, Co and Ni particles [8, 206] and in
nanowires [38, 135, 144, 148]. In large particles, shape anisotropy is destroyed by internal
flux closure [59] (section 4.2). The anisotropy of most materials is of magnetocrystalline
origin, reflecting the competition between electrostatic crystal-field interaction and spin–orbit
coupling [6]. The crystal field reflects the local symmetry of the crystal or surface and acts
on the orbits of the inner-shell d and f electrons. For example, figure 7(d) shows the charge
density of a magnetic central atom in a tetragonal environment. Due to the crystal field, which
contains both electrostatic and hopping contributions [207], the electron orbits depend on the
anisotropic crystalline environment.

The magnitude of the magnetocrystalline anisotropy depends on the ratio of crystal-
field energy and spin–orbit coupling. As a relativistic phenomenon, spin–orbit coupling is
most pronounced for inner-shell electrons in heavy elements, such as rare-earth 4f electrons.
This leads to a rigid coupling between spin and orbital moment, and the magnetocrystalline
anisotropy is given by the comparatively small electrostatic interaction of the unquenched
4f charge clouds [208] with the crystal field [8, 203, 209]. However, the absence of
quenching means that typical rare-earth single-ion anisotropies are much larger than 3d
anisotropies [8, 209, 210]. This is exploited in advanced permanent magnets, where it leads
to very high coercivities, such as 4.4 T in Sm3Fe17N3-based magnets [8, 211].

In 3d atoms, the spin–orbit coupling λ ≈ 50 meV is much smaller than the crystal-field
energy E0 � 1 eV, and the magnetic anisotropy is a perturbative effect. For uniaxial symmetry,
the anisotropy is of the order of λ2/E0, whereas the anisotropy of cubic materials scales as
λ4/E3

0 . In 3d oxides, E0 reflects the electrostatic crystal-field splitting [6], whereas in itinerant
magnets it is roughly equal to the d-band width [7]. Typical second- and fourth-order transition-
metal anisotropies are of the order of 2 and 0.02 MJ m−3, respectively. A manifestation of
magnetocrystalline anisotropy is magnetoelastic anisotropy, where the crystal field is changed
by mechanical strain. For example, cubic magnets subjected to uniaxial stress exhibit uniaxial
anisotropy. The magnetoelastic contribution to the first anisotropy constant is equal to 3λsσ/2,
where σ is the uniaxial stress and λs is the saturation magnetostriction. Experimental room-
temperature values of λs are −7 × 10−6 for iron, −33 × 10−6 for nickel, 40 × 10−6 for Fe3O4,
−1560 × 10−6 for SmFe2 and 75 × 10−6 for FeCo. These contributions are important, for
example, in strained polycrystalline or amorphous films [206, 212].
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Figure 8. Surface anisotropy. The anisotropy contribution of surface (black) and subsurface (white)
atoms depends on the local environment. Lowest-order biaxial anisotropy is realized for bcc (011)
but not for bcc (001) and bcc (111).

To realize second-order anisotropy, the atomic environment of the transition-metal atoms
must have a sufficiently low symmetry [86, 90–92, 213]. Figure 8 illustrates that this is often,
but not always, the case for surface atoms. Magnetic surface anisotropy, first analysed by
Néel [90], is important in complicated structures and morphologies such as ultrathin transition-
metal films [84], multilayers [214], rough surfaces [213], small particles [73] and surface
steps [215]. In a variety of cases it has been possible to calculate surface anisotropies from
first principles [92, 214, 216–219]. The same is true for some other low geometries, such as Fe
wires embedded in Cu [220] and freestanding monatomic Co wires [221]. An interesting point
is that surface anisotropies easily dominate the bulk anisotropy of cubic materials. From the
tables in the appendix we see that bulk anisotropies are about two orders of magnitude smaller
than lowest-order anisotropies. Due to the comparatively large number Ns of surface atoms of
small particles, the surface contribution dominates the bulk anisotropy in particles smaller than
about 3 nm, even if one takes into account that the net surface anisotropy is not necessarily
linear in Ns but tends to scale as N1/2

s due to random-anisotropy effects (section 4.6).
Magnetocrystalline anisotropy is characterized by a pronounced temperature

dependence [8, 26, 203, 222–224]. For example, in an intermediate temperature range the
leading rare-earth anisotropy contribution of permanent magnet intermetallics, such as SmCo5

and Nd2Fe14B, scales as 1/T 2 [225]. The main reason is that typical anisotropy energies
per atom are quite small, Ea/kB T ranging from less than 0.1 to a few K. The realization of
room-temperature anisotropy requires the support of the interatomic exchange field, which
suppresses the switching of individual atomic spins into states with reduced anisotropy
contributions [8, 222, 226].

4. Mesoscopic magnetism

The atomic-scale effects investigated in section 3 determine a magnet’s intrinsic properties,
such as the spontaneous magnetization Ms , the first uniaxial anisotropy constant K1 and the
exchange stiffness A. To some extent, these quantities are modified by nanoscale effects, but
most corrections are rather unimportant on length scales larger than about 1 nm, and to a good
approximation the intrinsic properties can be considered as local parameters. For example,
Ms (r) and K1(r) reflect the local chemistry and the unit vector n(r) of the easy magnetization
direction corresponds to the local c-axis orientation of the crystallites.

Why is knowledge of the local intrinsic properties not sufficient for an unambiguous
determination of the spin state? The reason is that Ms = |M | is supported by quite large
intra-atomic energy differences, whereas rotations of the magnetization vector are quite easy
to realize because they do not change Ms. It is this rotation of the magnetization that determines
the magnet’s hysteresis loop and its extrinsic properties. Zeeman and self-interaction magnetic
fields, interatomic exchange and magnetic anisotropy all contribute to the rotation, which
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Figure 9. Hysteresis loops: (a) basic extrinsic quantities derived from an M–H loop (full) and
the corresponding B–H loop (broken), (b) hysteresis loops of hard, semihard and soft magnets,
(c) loops measured parallel and perpendicular to an easy c axis, (d) an exchange-biased loop and
a loop exhibiting a first-order transition, (e) and (f) two-phase loops. The isotropic loop in (c)
corresponds to a randomly oriented ensemble of particles. Ideally, the perpendicular curves shown
in (c) are rectangular, but structural disorder encountered in practice leads to a smoothing of the
loops. All loops shown in this figure are schematic and exist in many variations and combinations.

occurs on a mesoscopic scale and is known as micromagnetism [227],although nanomagnetism
would be a better name to characterize the length scales involved.

Magnetic nanostructures exhibit a particularly rich extrinsic behaviour, including effects
such as random-anisotropy scaling [64], remanence enhancement [17], micromagnetic
localization [65], bulging-type nucleation modes [66] and a variety of grain-boundary [228]
and exchange-coupling effects [68, 69]. Even traditional ‘microstructured’ magnets exploit
nanometre-scale features for performance optimization2. For example, the best room-
temperature permanent magnets are now made from Nd–Fe–B [229–231], but as-cast samples
with the correct stoichiometry exhibit a disappointingly low coercivity unless the grain-
boundary structure is optimized by a specific heat treatment.

4.1. Phenomenology of hysteresis

The most important micromagnetic phenomenon is magnetic hysteresis, which refers to the
dependence of the magnetization as a function of the external magnetic field (figure 9).
Hysteresis is a complex nonlinear, nonequilibrium and nonlocal phenomenon, reflecting the
existence of anisotropy-related metastable energy minima separated by field-dependent energy
barriers. On an atomic scale, the barriers are easily overcome by thermal fluctuations, but on
nanoscale or macroscopic length scales the excitations are usually too weak to overcome the
barriers. The determination of the local magnetization M(r), from which the hysteresis loop
is obtained by averaging, is further complicated by the influence of the magnet’s real structure
(defect structure, morphology, metallurgical ‘microstructure’).

An extrinsic property of crucial importance in permanent magnetism is the energy
product (BH)max [8, 206]. Physically, it is twice the magnetostatic energy per magnet volume
2 The prefix ‘micro’ originates from the greek word µικρς , meaning ‘small’ but not implying any well-defined length
scale.
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stored outside the magnet, but in practice it is determined from the B–H hysteresis loop,
where it is equal to the grey area in figure 9(a). The energy product of hard magnetic steel is
about 1 kJ m−3, whereas advanced Nd2Fe14B [229] magnets have room-temperature energy
products of about 451 kJ m−3 [231]. This means that a compact Nd–Fe–B magnet of less
than 3 g is now able to replace a 1 kg horseshoe magnet—a feature of major importance for
advanced consumer electronics, car design and computer technology. However, the outlook for
discovering new ternary phases with significantly improved permanent magnetic properties has
been poor [8, 19] and nanostructuring has developed into a major tool for further improvements
(sections 4.4 and 4.5).

Figure 9(f) indicates that nanostructuring has a pronounced influence on the hysteresis.
This is exploited in the soft magnetic random-anisotropy nanostructures introduced in
section 2.5, in permanent magnets, in magnetic-recording media and in materials for sensors.
For example, adding a soft material with a high magnetization, such as Fe65Co35 (µ0 Ms =
2.43 T), to an oriented hard magnet enhances the permanent energy product if the grain size
of the soft regions is sufficiently small [19]. The reason is that the energy product increases
with coercivity Hc (figure 9) but can never exceed the value µ0 M2

r /4 � µ0 M2
s /4. In the case

of ideal rectangular hysteresis loops, this upper limit is reached for Hc = Ms/2, and even in
real magnets there is little energy-product improvement on making Hc much larger than Hc/2.
Adding the soft phase enhances the magnetization, while the surplus anisotropy of advanced
hard magnetic intermetallic phases, such as SmCo5, Nd2Fe14B and PtCo, ensures a sufficient
coercivity (section 4.4).

The development of exchange-coupled permanent magnets has, in fact, several starting
points. Coehoorn et al [17] developed remanence-enhanced isotropic Nd–Fe–B materials; this
research has its scientific roots in earlier random-field [232] and random-anisotropy [64, 233]
theories. A second starting point is the investigation of magnetic multilayers [18, 19, 96],
which is now widely associated with Kneller’s concept of exchange-spring magnetism. Third,
attempts to predict the nucleation-field coercivities Hc = HN for three-dimensional two-phase
nanostructures have given rise to a quantitative analysis of the permanent-magnet performance
of oriented two-phase nanostructures of arbitrary geometry [19, 234]. Frequently considered
experimental structures are multilayers consisting of two different phases [18–20, 22, 68, 96–
99, 235] and granular materials [7–9, 21, 23, 28, 29, 57, 66, 154, 155, 234, 236, 237].

A key theoretical problem is to derive magnetization curves by simulating [238–241]
or modelling the magnet’s nanostructure. Only in a few cases is it possible to obtain exact
coercivity results. Examples are the coherent-rotation or Stoner–Wohlfarth model (section 4.3)
and the nucleation field in aligned hard–soft nanocomposites. Much progress has been made
in the field of numerical simulation [239, 240], although the size of the simulated structures
is limited to about 100 × 100 × 100 lattice points, and the explanation and prediction
of real magnets has remained a demanding task. This is due to the nonlinear, nonlocal
and nonequilibrium character of the involved magnetization processes and to the multiscale
nature [237, 242] of the structures. However, it has been known for decades that neither the
coercivity nor the loop shapes of real materials are reproduced by Stoner–Wohlfarth theory.
For example, the coercivity of optimized permanent magnets is only 20–40% of the anisotropy
field. The main reason is imperfections affecting nanoscale magnetization processes.

4.2. Micromagnetic background

To determine hysteresis loops it is necessary to trace the local magnetization M(r) as a function
of the applied field. Usually, this is done on a continuum level [8, 192, 227]. Narrow-wall
phenomena, which have been studied for example in rare-earth cobalt permanent magnets [243]
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and at grain boundaries [67, 237, 244], involve individual atoms and atomic planes and lead
to comparatively small corrections to the extrinsic behaviour (section 4.5). The starting point
is the energy functional

E =
∫ {

A

[
∇

(
M

Ms

)]2

− K1
(n · M)2

M 2
s

− µ0M · H − µ0

2
M · Hd(M)

}
dV (4.1)

where n(r) is the unit vector of the local anisotropy direction, H is the external or Zeeman
field and

Hd(r) = 1

4π

∫
3(r − r′)(r − r′) · M(r′) − |r − r′|2M(r′)

|r − r′|5 dV ′ (4.2)

is the magnetostatic self-interaction field3. Equation (4.1) is also known as the micromagnetic
free energy, indicating that A, K1,n and Ms are temperature-dependent equilibrium quantities
which can, in principle, be determined from an atomic scale partition function.

The ∇ term in (4.1) means that the exchange is treated on a continuum level. A more
general approach is to use an exchange-interaction kernel of the type J (|r − r′|) = J (R),
but for small k vectors the Fourier-transformed interaction integral

∫
J ∗(k) sin(k R)R dR can

be expanded into powers of k. Comparing the quadratic term with −Ak2 yields the exchange
stiffness A as a functional of J (R). For example, RKKY interactions are diagonal in k-
space and are proportional to the Lindhard screening function F(x) = 1 − x2/3 + O(x4),
where x = k/2kF [172, 181]. Aside from short-wavelength magnetization variations, where
k is comparable to kF , (4.1) ignores exchange contributions anisotropic with respect to the
‘bond’ direction k/k and with respect to the magnetization direction M/Ms . The first type of
exchange anisotropy occurs, for example, in intermetallics consisting of atomic layers, such
as PtCo and SmCo5, and then means that intraplanar exchange is different from interplanar
exchange. The second type of exchange anisotropy is a spin–orbit effect and yields a small
anisotropic contribution to the finite-temperature magnetization.

Dimensional analysis of (4.1) yields two fundamental length scales,namely the wall-width
parameter

δ0 =
√

A

K1
(4.3)

and the exchange length

lex =
√

A

µ0 M2
s

. (4.4)

Simplifying somewhat, the wall-width parameter determines the thickness of the domain wall
separating magnetic domains of different magnetization directions [56, 61, 62, 245] and the
spatial response of the magnetization to local perturbations [237]. The wall-width parameter
varies from about 1 nm in extremely hard materials to several 100 nm in very soft materials.
The exchange length is the length below which atomic exchange interactions dominate typical
magnetostatic fields. It determines, for example, the transition from coherent rotation to curling
(section 4.3) and the grain size below which the hysteresis loops of two-phase magnets look
single-phase-like (figure 9). Since typical ferromagnets have magnetizations of the order of
1 T and exchange stiffnesses of the order of 10 pJ m−1, lex is between 1 and 2 nm for a broad
range of materials. In practice, most lengths derived from lex carry a factor of 5 [8], so that
3 This field differs by M/3 from the internal magnetostatic field obtained from Maxwell’s equations. However,
magnetic fields couple as M · H to the magnetization, so that any term proportional to M · M = M2

s amounts to a
physically irrelevant shift of the zero-point energy [8].
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Figure 10. Micromagnetic spin configurations: (a) single-domain state, as observed in very small
particles, (b) two-domain configuration, as encountered in fairly small particles with uniaxial
anisotropy, (c) flux closure in cubic magnets, (d) complicated domain structure in a polycrystalline
magnet, (e) Bloch wall in a thin film with perpendicular anisotropy and (f) Néel wall in a thin film
with in-plane anisotropy. In macroscopic magnets, the thickness δw of the domain walls separating
the domains is much smaller than the domain size, but in nanostructures the distinction between
domains and domain walls often fades.

experimental exchange-length scales are close to 10 nm. From an atomic point of view, the
order of magnitude of lex is a0/α = 7.52 nm, where a0 is the Bohr length and α ≈ 1/137
is Sommerfeld’s fine-structure constant [59]. Physically, the involvement of the fine-structure
constant reflects the higher-order relativistic character of the anisotropy.

The magnetostatic self-interaction term in (4.1) favours magnetic domains with partial
or complete flux closure [108, 192, 206, 246–248]. As indicated in figure 10, domains are
separated by comparatively thin domain walls [61, 62, 247]. Essentially, the thickness of the
walls is determined by the competition between exchange, which favours smooth walls, and
anisotropy, which favours narrow transition regions. Examination of (4.3) and (4.4) leads to the
conclusion that the wall with δw is proportional to δ0. For a 180◦ Bloch wall in a bulk magnet,
δw = πδ0, but many thin-film walls, such as the Néel wall shown in figure 10(f), involve
magnetic charges, and δw depends on l0 too. Note that the Bloch wall width is also written as
δB , to distinguish it from other wall types. Sometimes δB is interpreted as an exchange length
determining the effective range of exchange interactions. If this was a valid consideration,
then ideally soft materials, where K1 = 0 and δB = ∞, would realize exchange coupling on
a truly macroscopic scale, without giving rise to two-phase inflections in the hysteresis loops.

Domain formation is favourable from the point of view of magnetostatic self-interaction,
but there are no ground-state domains if the gain in magnetostatic energy is smaller than the
domain-wall energy. Substituting the Bloch-wall magnetization [82, 247]

Mz(x) = −Ms tanh(x
√

K1/A) (4.5)

into (4.1) and performing the integration yields the domain-wall energy γ = 4
√

AK1. For
a sphere containing two semisphere domains of opposite magnetization, the wall energy is
therefore 4π

√
AK1 R2. The gain in magnetostatic energy is roughly equal to half the single-

domain energy, that is, to µ0 M2
s V/12 [245]. Domain formation is therefore favourable for

spheres whose radius is larger than the critical single-domain radius:

RSD = 36
√

AK1

µ0 M2
s

. (4.6)
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In very hard magnets, RSD exceeds 1 µm. However, the critical single-domain size and domain
size in multi-domain structures are strongly geometry-dependent [59, 245, 248]. For example,
the domain size (stripe width) in films with perpendicular anisotropy Dd is easily estimated by
comparing the stray-field energy µ0 M2

s Dd L2, where L2 is the film area, with the wall energy
γ bL(L/Dd), where b is the film thickness [245]. Minimizing the total energy with respect
to Dd yields Dd ≈ (γ b/µ0 M2

s )1/2. In other words, the domain size exhibits a square-root
dependence on the film thickness.

Equation (4.6) describes spherical magnets whose size is larger than the domain-wall
width δB . However, the radius of soft magnetic nanoparticles is often smaller than δB and
inhomogeneous magnetization states then extend throughout the particle, ∇M ∼ Ms/R. The
corresponding magnetostatic and exchange energies scale as µ0 DM2

s R3 and AR, respectively,
and a strongly nonuniform ground state is realized when R is much larger than

√
A/µ0 DM2

s =
D−1/2lex . In plate-like thin-film dots, the relevant demagnetizing factor D is proportional to
the ratio of film thickness to dot diameter. It can be shown that this scaling law is valid for
µ0 DM2

s � K1. In the opposite limit, µ0 DM2
s � K1, the expressions depend on the easy axis

direction and involve RSD .
It is important to note that the critical single-domain radius is an equilibrium property,

involving the comparison of the energies of single- and multi-domain states but independent
of the energy barriers separating the states. It determines, for example, the virgin state
after thermal demagnetization. In contrast, hysteresis is a non-equilibrium phenomenon
caused by energy barriers. Furthermore, equilibrium domains are qualitatively different from
the nonuniform (incoherent) magnetization states occurring during magnetization reversal
(sections 4.3 and 4.4). The onset of nonuniform (incoherent) reversal in perfect ellipsoids of
revolution is governed by the exchange length (4.4). This quantity is anisotropy-independent
and, in hard magnets, much smaller than RSD . The popular but incorrect equating of single-
domain magnetism and coherent rotation, as epitomized by the unfortunate term ‘ESD particle’
(section 2.1), has its origin in the focus on soft and semi-hard magnets in the first half of the
20th century.

4.3. Fundamental magnetization processes
The most intriguing aspect of hysteresis is the coercive force or coercivity, figure 9(a). It
describes the stability of the remanent state and gives rise to the classification of magnets into
hard magnetic materials (permanent magnets), semihard materials (storage media) and soft
magnetic materials. A widely used phenomenological coercivity expression [249]

Hc = αK
2K1

µ0 Ms
− Def f Ms − �H (T, η) (4.7)

where αK is the real-structure-dependent Kronmüller parameter [250, 251], Def f is a
magnetostatic interaction parameter and �H is a fluctuation-field correction due to thermal
activation [8, 249, 252]. The comparatively small �H term, which will be discussed in
section 5.3, means that the coercivity depends on the sweep rate η = dH/dt of the external
field.

A key problem of coercivity theory is to determine Hc from the magnet’s real structures. In
small particles, the exchange is sufficiently strong to ensure that M(r) is constant throughout
the magnet, that is, ∇M in (4.1) is zero. Depending on the context, this regime is called
coherent rotation, uniform rotation or Stoner–Wohlfarth reversal [227, 253, 254]. For uniaxial
ellipsoids of revolution having the symmetry axis parallel to the external field H = Hez, the
energy (4.1) then becomes

E

V
= K1 sin2 θ +

µ0

2
(1 − 3D)M2

s sin2 θ − µ0 Ms H cos θ (4.8)
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Figure 11. Nucleation modes in homogeneous magnets: (a) coherent rotation in a sphere, (b)
curling in a sphere and (c) curling in a cylinder. The arrows show the local magnetization
M = Mzez + m, where ez is parallel to the axis of revolution of the ellipsoid (cylinder).

where D is the demagnetizing factor introduced in section 3.3 and θ is the angle between
M and ez . The coercive field, at which the magnetization jumps from M = Mz = Ms to
M = −Ms is obtained by stability analysis. Expanding (4.8) into small powers of θ yields

E

V
=

(
K1 +

µ0

2
(1 − 3D)M2

s +
µ0

2
Ms H

)
θ2. (4.9)

The energy minimum associated with θ = 0 vanishes when the reverse field reaches the
coercive field

Hc = 2K1

µ0 Ms
+

1

2
(1 − 3D)Ms . (4.10)

The Stoner–Wohlfarth model, as epitomized by this equation, works fairly well for very small
particles, where ∇M = 0 is a good approximation. It is frequently applied to ensembles of
noninteracting and randomly oriented small particles, where a generalization of (4.8) yields the
coercivity Hc = 0.48Ha and the remanence Mr = 0.5Ms . However, in most real magnets the
Stoner–Wohlfarth model significantly overestimates the coercivity, because flux closure effects
and structural imperfections lead to ∇M 	= 0 [8, 254] and because intergranular interaction
effects are ignored in (4.8).

The Stoner–Wohlfarth coercivity (4.10) is a simple example of a nucleation field, HN .
In micromagnetism, the term ‘nucleation’ refers to the instability of the remanent state in a
reverse magnetic field Hz = −HN . It does not necessarily imply localization effects [8, 192],
although localized nucleation is frequently encountered in practice (section 4.7). In small
particles the nucleation mode is uniform (coherent), in contrast to the incoherent and often
localized modes realized in large particles. Figure 11 illustrates the geometrical meaning of
the incoherent curling mode, which is realized in large but perfect ellipsoids of revolution.
Curling is favourable from the point of view of magnetostatic self-interaction, because the
vortex-like mode yields some flux closure, but it costs some exchange energy, because
∇M 	= 0. The derivation of the curling mode involves the exchange term in (4.1). After
some calculation [8, 192, 227, 254] one obtains the nucleation field (coercivity):

HN = 2K1

µ0 Ms
− DMs +

c(D)A

µ0 Ms R2
. (4.11)



R862 Topical Review

Figure 12. Domain-wall pinning: (a) attractive pinning and (b) repulsive pinning.

Here the radius R refers to the two degenerate axes of the ellipsoid, c = 8.666 for spheres
(D = 1/3) and c = 6.678 for needles (D = 0). In (4.14), the magnetostatic contribution,
−DMs , is always negative, in contrast to the term (1 − 3D)Ms/2 in (4.10). This means that
there is no shape anisotropy in large magnets, although the exchange term in (4.11) partly
compensates for the absence of shape anisotropy in a proper sense [66]. Coherent rotation and
curling modes in misaligned magnets are discussed in [255].

Comparison of (4.10) and (4.11) yields a transition from coherent rotation to curling at a
coherence radius Rcoh . For R < Rcoh , the exchange energy dominates and the nucleation is
realized by coherent rotation, whereas for R > Rcoh the nucleation behaviour is dominated
by flux closure and realized by curling. For spheres one obtains Rcoh = 5.099lex , where lex

is defined in (4.4) and tabulated for some materials in the appendix. In ‘wires’ (D = 0),
the coherence radius Rcoh = 3.655lex [8, 192, 227]. These radii are typically of the order of
5–10 nm. In thin films with perpendicular anisotropy (D ≈ 0), curling occurs when the cross
section of the films exceeds some value scaling as l2

ex [59]. The involvement of the exchange
length can also be deduced from dimensional arguments, as outlined in section 4.2. Note that
Rcoh is anisotropy-independent, in contrast to the critical single-domain radius RSD . Since
Rcoh � RSD in hard magnets, there is a broad region Rcoh ≈ 10 nm and RSD ≈ 1 µm, where
single-domain particles demagnetize incoherently.

A key distinction in micromagnetism is between nucleation and domain-wall pinning.
Nucleation-controlled magnets are, ideally, defect- and domain-free and the coercivity is
essentially given by the nucleation field. In contrast, pinning-typemagnets contain pronounced
inhomogeneities, which ensure coercivity by impeding the motion of the domain walls. Pinning
determines, for example, the coercivity of iron and steel magnets [63, 206, 246], where
the pinning force is associated with macroscopic mechanical strain. Pinning at nanoscale
grain-boundary features is exploited, for example, in industrial Sm–Co–Cu–Zr magnets,
which consist of regions of a main phase (essentially Sm2Co17) separated by a pinning
grain-boundary phase (copper-rich SmCo5) [8, 26, 68, 256, 257]. Figure 12 illustrates the
difference between two pinning mechanisms, repulsive and attractive pinning. Repulsive
pinning involves inhomogeneities whose anisotropy is higher than that of the main phase.
Since high anisotropies yield high domain-wall energies 4(AK1)

1/2, the penetration of the
wall into the high-anisotropy regions is energetically unfavourable. By comparison, attractive
pinning means the capturing of a wall in a low-anisotropy region.

The pinning energy barrier is, to a fair approximation, proportional to the anisotropy
difference, and by changing the chemical composition or, for some compositions, the
temperature [258] it is possible to adjust the anisotropy and to tune the pinning
behaviour. This is exploited in the development of permanent magnets for high-temperature
applications [226, 258–263]. One example is high-temperature Sm–Co–Cu–Ti alloys having
coercivities above 1.2 T (12 kOe) at 500 ◦C [258]. Note that the temperature dependence of
the coercivity is dominated by the intrinsic mechanism, whereas thermally activated jumps
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over energy barriers yield only a small sweep rate and magnetic-viscosity corrections to the
coercivity (section 5.3).

A simple planar-wall pinning expression is Hc = (dγ (x)/dx)/(2 µ0Ms ), where γ (x) is the
average wall energy as a function of the wall position [246]. For a small planar inhomogeneity
characterized by the anisotropy K = K1 +�K and the thickness b the above coercivity reduces
to [246]

HN = Ha
πb

3
√

3δB

|�K |
K

(4.12)

where δB = π(A/K )1/2 is the Bloch-wall width of the main phase and Ha = 2K/µ0 Ms .
A rather straightforward way to discuss arbitrary K1 and A profiles is to use a variation
principle [258]. For small inhomogeneity amplitudes, this method yields exact results.
Ignoring the exchange-stiffness variation, the energy of a one-dimensional wall of arbitrary
width and profile is

Ew(x) =
∫

K1(x)

(
1 − tanh2

(
π

δB
(ξ − x)

))
dξ (4.13)

where x denotes the wall position.
The pinning caused by a very few large defects, as illustrated in figure 12, is known as

strong pinning. In contrast, pinning involving a large number of small pinning centres, such
as atomic defects, is called weak pinning. In the case of weak pinning [264], the wall energy
is averaged over a distance of the order of δB , so that the density of pinning centres determines
the pinning strength. Some aspects of weak pinning will be discussed in section 4.6. Other
types of pinning are, e.g., pinning at surface defects [248] and pinning caused by sesquilayer
film-thickness modulation [86].

4.4. Nucleation in nanocomposites and multilayers

For perfect and aligned ellipsoids of revolution, (4.10) and (4.11) are exact results, which
makes it tempting to use the nucleation field HN as an estimate for the coercivity of real
magnets. However, the condition of perfection is quite stringent, because a single nanoscale
inhomogeneity may initiate the magnetization reversal of a macroscopic magnet. This localized
nucleation leads to strong reduction of HN and solves Brown’s paradox [227, 265], according
to which observed coercivities are often much smaller than predicted by (4.10)–(4.11).

To determine the nucleation field from (4.1), we write the local magnetization as

M(r) = Ms
(√

1 − m2 ez + m(r)
)

(4.14)

where m is the perpendicular magnetization component (|m| = sin θ). Taking into account
that n = ez for aligned magnets, inserting (4.14) into (4.1) and expanding the result in powers
of m yields the quadratic free-energy expression

E =
∫

[A(∇m)2 + Kef f (r)m2 − 1
2µ0 Ms Hm2] dr. (4.15)

In a strict sense, the effective local anisotropy Kef f (r) is a complicated real-structure-
dependent tensor4. However, in lowest order the tensor character of Kef f amounts to removing
the degeneracy of m with respect to mx and m y [19] and one can treat Kef f as a scalar. This
approach is exact for coherent rotation and curling, where Kef f = K1 + µ0(1 − 3D)M2

s /4 and
4 In k space, the structure of this term is k ⊗ k/k2, compared to the diagonal expression Ak2 describing exchange.
A physical interpretation of the projection k ⊗ k in terms of Maxwell’s equations is that a planar magnetization
inhomogeneity changes the perpendicular field component (parallel to k) but leaves the in-plane component unchanged.
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Figure 13. Soft-magnetic cube embedded in a very hard single-crystalline matrix (K1 � µ0 M2
s ).

K1 − µ0 DM2
s /2, respectively, and a good approximation for magnets where magnetostatic

effects can be treated on a mean-field level [113].
Eigenmode analysis of (4.15) yields the differential equation

A∇2m −
(

Kef f (r) +
µ0

2
Ms H

)
m = 0 (4.16)

where we have assumed that A is constant throughout the magnet. In terms of (4.16),
imperfections appear as a modification of the local anisotropy Kef f (r) and lead to a nucleation
field and coercivity reduction [19, 65, 66, 234].

To solve the nucleation problem we note that (4.16) has the same structure as the single-
particle Schrödinger equation

− h̄2

2m
∇2ψ + (V1(r) − E)ψ = 0. (4.17)

This analogy makes it possible to use ideas known from quantum mechanics to solve
micromagnetic problems. In particular, the nucleation field and the nucleation mode are
analogous to the ground-state energy and the ground-state wavefunction, respectively [19].

A simple example is a soft magnetic cube of volume L3 embedded in a very hard matrix
(figure 13). The corresponding wavefunctions are particle-in-a-box states for an infinite
potential well:

�(x, y, z) = �0 sin

(
πnx x

L

)
sin

(
πny y

L

)
sin

(
πnzz

L

)
(4.18)

and the ground-state energy is 3π2h̄2/2mL2. Using this energy and comparing (4.16)
and (4.17) we obtain the nucleation field

HN = 6π2 A

µ0 Ms L2
(4.19)

where Ms is the spontaneous magnetization of the soft phase. This result can also be written
as

HN = Ha
3δ2

B Mh

L2 Ms
(4.20)

where Ha = 2K1/µ0 Mh is the anisotropy field of the hard phase, Mh is the magnetization
of the hard phase and δB = π(A/K1)

1/2 is the Bloch wall width of the hard phase. In
the past, nucleation fields have been obtained for several cases: spherical particles in an
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Figure 14. Nucleation modes in spheres surrounded by a hard magnetic shell: (a) coherent rotation,
(b) bulging, (c) curling and (d) clamped curling. The figures are top views on the equator plane
and the arrows show m(r) for the core phase (white) and in the hard magnetic environment (grey)
m(r) ≈ 0. In both cases, the radial dependence of m is given by spherical Bessel functions [66].

infinitely hard matrix [234], small inclusions in a matrix of arbitrary anisotropy and exchange
stiffness [19, 66], various types of multilayers [19, 96] and some core-shell and nanowire
configurations [66, 113, 145].

From (4.19) and (4.20) we see that HN increases with decreasing inclusion size
L. However, the small-inclusion divergence predicted by (4.19) and (4.20) is not
realized in practice, because the anisotropy field Ha of the hard phase provides a cut-off.
Extrapolating (4.20) to HN ≈ Ha shows that the nucleation field reaches the anisotropy field
when the size or radius of the soft inclusion becomes comparable to the Bloch wall width of
the hard phase [18, 19, 234]. Since the Bloch wall width of typical permanent magnets is of the
order of 5 nm, soft regions should be smaller than about 10 nm to ensure complete exchange
coupling. However, this value depends to some extent on the geometry of the nanostructure; it
is smallest for spheres but somewhat larger for multilayers. When the size of inhomogeneities
is smaller than about 10 nm, then one can replace the local anisotropy K1(r) and the local
magnetization Ms(r) by volume averages [8, 19]. The quantum-mechanical analogue of this
limit is the virtual-crystal approximation, where the potential V (r) is averaged over atomic
disorder.

The weaker requirement, that the switching field of the soft phase is comparable to the
required coercivity, rather than comparable to the anisotropy field of the hard phase, leads to
somewhat larger critical sizes, scaling as Rcoh ∼ lex [66]. The same length scale determines
the critical grain size above which the hysteresis loops of magnets consisting of hard and soft
phases exhibit an inflection-type superposition of single-phase loops [68, 98, 266]. Figure 9(f)
shows examples of these loops for the small-inclusion plateau regime (broken curve) and the
large-inclusion exchange-spring regime (full curve). In contrast to the domain-wall width of
the hard phase, that of the soft phase is irrelevant to the problem (section 4.2).

The nucleation modes for soft inclusions in a very hard matrix are clamped, that is,
m(r) = 0 at the hard–soft interface [66]. Figure 14 compares the clamped modes for
spherical inclusions with the free-surface modes of isolated particles. The ‘quasi-coherent’
or ‘bulging’ mode shown in figure 14(b) has the angular symmetry of the coherent-rotation
mode but is incoherent due to its radial variation. Bulging and clamped curling are realized for
small and large inclusion diameters, respectively [66]. Similar localized modes exist in some
inhomogeneous wire and thin-film geometries [65, 66, 113].

Two-phase nanostructuring is of practical interest in permanent magnetism (section 4.1).
As briefly outlined in section 4.1, the hard phase acts as a skeleton to ensure a coercivity of
the order of Hc/2, whereas adding the soft magnetic high-magnetization phase enhances Ms

and Mr [19]. For suitable combinations of hard and soft phases, the upper limit to the energy
products exceeds 1000 kJ m−3 [8, 19]. This limit is essentially independent of the shape of the
soft and hard regions so long as the size of the soft regions remains sufficiently small. Various
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combinations of soft magnetic phases with SmCo5 [20, 22, 235], Nd2Fe14B [88] and PtFe [21]
have been investigated, but the development of the required well-textured and fine-grained
nanostructure has remained a demanding task. Experimentally, the theoretical predictions
have been realized in a Pt–Fe composite, whose energy product of 420 kJ m−3 (53 MGOe)
exceeds that of hard magnetic PtFe and nearly reaches that of Nd–Fe–B [21], in spite of the
only moderate magnetization of the involved PtFe and PtFe3 phases. Note that the structures
described by (4.16) are aligned. Texture effects, which dominate in isotropic magnets, are
considered in section 4.6.

The energy-product enhancement discussed in this section exploits the nanoscale character
of the competition between exchange and anisotropy. As discussed in section 3.2, it is not
possible to enhance the finite-temperature magnetization of a phase having a low bulk Curie
temperature by exchange-coupling it to a phase having a high bulk Curie temperature [60].

4.5. Grain boundaries and nanojunctions

The spin structure at grain boundaries and nanojunctions is a nanoscale phenomenon of
great importance in permanent magnetism, magnetic recording, soft magnetism and spin
electronics. In permanent magnets, it is often necessary to maximize [8, 19] or minimize the
intergranular exchange, depending on the desired reversal mechanism (section 4.4 and 4.6).
Strong intergranular exchange reduces the coercivity of isotropic soft magnetic nanostructures
but is undesired in magnetic recording, where it negatively affects the storage density [32, 267],
and the resistance of spin-electronic structures depends on the local magnetization at interfaces
and at junctions [67, 237, 244, 268, 269]. From a theoretical point of view, the micromagnetics
of granular interfaces and constrained domain walls was first investigated in the context of
polycrystalline rare-earth transition-metal intermetallics [67], although various earlier papers,
e.g. [19, 96, 243, 270], anticipate much of the involved physics.

For simplicity, we restrict ourselves to the linear case, which is realized, for example, in
weakly textured systems. Applying the present approach to large angles introduces corrections,
such as a wall-width enhancement by a factor π/2, but the essential physics of the following
paragraphs remains unchanged. First we use (4.14) and the corresponding equation for the local
easy axis as n(r) = √

1 − a2(r)ez + a(r), where a(r) are the transverse vector components
of n. Series expansion then yields M = Ms(1 − m2/2)ez + Msm and n = (1 − a2/2)ez + a.
With H = Hez and (4.1) leads to

E =
∫ [

A(∇m)2 + K1(m − a)2 + 1
2µ0 Ms Hm2

]
dr. (4.21)

In this equation, which is an extension of (4.15), we have incorporated the magnetostatic self-
interaction into K1 and H . To minimize E with respect to m(r) we exploit that the minimum
of any functional F = ∫

η dV is characterized by the functional derivative δF/δm(r) = 0.
Explicitly,

δF

δm(r)
= −∇

(
∂η

∂∇m(r)

)
+

∂η

∂m(r)
(4.22)

so that [67]

−∇(A∇m) +
(
K1 + 1

2 Ms H
)
m = K1a(r). (4.23)

This equation means that the polycrystalline easy axis disorder a(r) acts as a random
inhomogeneity.
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Figure 15. Boundary conditions and exchange: (a) hard–soft interface with common A,
(b) interface between two ferromagnetic phases with different A and (c) quasi-discontinuous
magnetization due to strongly reduced exchange between grains I and II. Note that the perpendicular
magnetization component m(x) can be interpreted as a magnetization angle.

The term ∇(A∇m) reflects due to local character of exchange stiffness A(r) [19]. For
sharp phase boundaries, the exchange term reduces to the boundary condition(

A(x)
∂m

∂x

)∣∣∣∣
x0−ε

=
(

A(x)
∂m

∂x

)∣∣∣∣
x0+ε

. (4.24)

Figure 15 illustrates the physical meaning of this boundary condition. A jump in A(x) leaves the
magnetization continuous but yields a change in the slope of the perpendicular magnetization
component m(x). The solutions of (4.23) are exponentially decaying in the adjacent grains
and nearly linear in the interface region [67, 237, 244].

When the exchange stiffness in the grain-boundary region is much lower than that of the
two adjacent phases, then one encounters a quasi-discontinuity of the magnetization, as shown
in figure 15(c). Experimentally, reduced interface exchange reflects real-structure features
such as impurity atoms diluting the interatomic exchange, oxide layers covering the grains and
interface amorphization. For H = 0, the relative strength of the quasi-discontinuity

� = 1

1 + 2A′δB/π AD
(4.25)

where D is the thickness of the interface region. Zero exchange in the grain-boundary
region (A′ = 0) yields an ideal magnetization jump, � = 1, as expected for complete
decoupling. For D = 0, (4.25) reduces to the trivial prediction of a vanishing quasi-
discontinuity (� = 0). In the intermediate regime, the large ratio δB/D tends to suppress
the influence of the reduced interface exchange. In a layer-resolved analysis, the ∇ operator in
(4.21) and (4.23) must be replaced by magnetization-angle differences, but a comparison with
the continuum solution [237, 244] reveals only minor corrections due to the discrete nature
of the layers. However, the layer-resolved anisotropies and exchange constants may deviate
from the respective bulk values.

Using the integral
∫
(∇M)2 dx ≈ M2

s

∫
(∇m)2 dx as a crude measure to gauge the spin-

dependent scattering ability of an interface we find that the scattering is maximized for interface
thicknesses of the order of D = δ0 A′/A. Smaller thicknesses lead to a reduction of the quasi-
discontinuity and make the scattering more bulk-like. Compared to Bloch wall scattering,
where

∫
(∇m)2 dx ≈ 1/δ0, the maximum scattering is enhanced by a factor A/A′, so that

optimized exchange-decoupled grains would yield very large scattering. Unfortunately, strong
reductions of A′ are likely to negatively affect the spin injection through the boundary region,
thereby reducing the magnetoresistance. Another way of enhancing the scattering is using
very hard materials, where δ0 is small, but this requires large fields to switch the magnetization
direction [237].
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Figure 16. Exchange effects at interfaces: (a) planar interface and (b) contact junction [67, 237].

Varying the relative alignment of the grains and evaluating the energy (4.21) as a function
of the misalignment vector a yields an effective exchange between grains. The effective
exchange corresponding to (4.25) is [244]

Je f f = S0

√
AK1

1

1 + π D A/2δB A′ (4.26)

where S0 is the interface area. From this equation we see that the effective exchange can
never be larger than the value S0(AK1)

1/2, which scales as Bloch wall energy of a perfect
magnetic crystal (section 4.2). This result must be contrasted to the popular assumption [267]
that Je f f ≈ S0 A′/a, which assigns a bond of strength J ′ ≈ A′/a to each of the N ≈ S0/a2

adjacent pairs of atoms and overestimates the effective exchange, particularly in soft magnets.
Solutions similar to (4.26) have also been obtained for hard–soft interfaces [67], where most
of the energy is stored in the soft phase.

The one-dimensional character of the structural features considered above means that
the solutions of (4.23) are piecewise exponential, proportional to exp(±x/δ0(x)). To tackle
the problem for arbitrary geometries and dimensions, it is convenient to rewrite (4.23) as
a linear operator equation, Qm = a. The formal solution of this equation is m = Ga
or, in real space, m(r) = ∫

G(r, r′) a(r′) dV ′, where G = Q−1 is the propagator (Green
function) of the micromagnetic problem [67]. G(r) is proportional to Kd/2−1(r/rδ), where
Km is Macdonald’s modified Bessel function of order m and rδ is the interaction length
of the problem [271]. In the absence of magnetic fields, rδ ≈ δ0 = δB/π . For one-
dimensional problems, G(r) is exponential, whereas three-dimensional problems are described
by K1/2(r/rδ) ∼ exp(−r/rδ)/r . Figure 16 illustrates the meaning of G for two examples. In
figure 16(b), the semi-infinite character of the connected ferromagnetic bodies does not affect
G(r) very much, because (4.24) implies that ∂m/∂r⊥ = 0 at free surfaces. Note that rδ
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does not depend on the strength of the inhomogeneities: varying the exchange in the interface
region in (a) or the size or coupling strength of the junction in (b) affects the amplitude of
the perturbation but leaves its range rδ unchanged. This complicates the determination of the
spin structure at nanojunctions and similar features from first principles, because the perturbed
regions tend to contain thousands or even millions of atoms and because the energy differences
involved are very small.

4.6. Textured magnets and random-anisotropy behaviour

A broad variety of magnetic materials are characterized by completely or partially random easy
axes. Completely random easy axes, 〈n(r)〉 = 0, are encountered in isotropic nanostructures
and in many amorphous magnets [13, 162, 164, 272]. Partial easy axis randomness or texture
is found, for example, in partially oriented polycrystalline magnets [21] and in strained
amorphous magnets [159]. Random anisotropy and texture effects are of great scientific
and technological importance. In the 1970s it became clear that random anisotropy structures
exhibit scientifically and technologically interesting properties,and the control and exploitation
of random anisotropy effects has become a major issue in permanent magnetism [8, 17, 157],
magnetic recording [32, 244, 273] and soft magnetism [25, 274].

Atomic-scale random anisotropy effects have first been discussed in the context of spin
glasses [13, 151, 160, 272], although there is a clear distinction between canonical random
exchange spin glasses and random anisotropy magnets [13, 151]. Interatomic exchange in
random anisotropy magnets favours ferromagnetic spin alignment, competing against the
randomness and yielding interesting spin correlation effects. The same is true for random
field magnets, which were investigated first [232]. The coercivity and remanence of atomic
random anisotropy magnets was investigated in the late 1970s [233, 275, 276], whereas
Chudnovsky et al [64] investigated random anisotropy effects in polycrystalline materials.
From a technological point of view, texture tends to deteriorate magnetization, hysteresis-
loop shape and coercivity. The coercivity reduction is undesired in permanent magnets and
recording media but exploited to reduce losses in soft magnets. Furthermore, the negative effect
of texture on the magnetization is partly compensated by exchange. However, intergranular
exchange may reverse this effect, which is known as remanence enhancement.

In permanent magnets, perfect c-axis alignment is difficult to realize and most
nanostructures, including those investigated in [21], exhibit some degree of polycrystalline
texture. The starting point for the description of weak texture is (4.23). Neglecting the
comparatively weak influence of exchange inhomogeneities [19], the term ∇(A∇m) in (2.23)
becomes A∇2m. Since the spatial average 〈a〉 of the easy-axis fluctuations vanishes, 〈m〉 = 0,
we have to consider the average 〈m(r) · m(r′)〉. In particular, choosing r = r′ yields the
average magnetization 〈Mz〉 = Ms(1 − 〈m2〉/2), whereas for r 	= r′ the average describes
spatial magnetization correlations. Putting Q = Q0 + δQ, where Q0 = G−1

0 is an easy-to-invert
operator and δQ is a small perturbation, yields the series expansion G = G0 − G0δQG0 ± · · ·.
In lowest-order perturbation theory, 〈m(r)·m(r′)〉 = 〈G0a(r)G0a(r′)〉 [67, 266]. In the limit
of strong coupling, the magnetization curves obey Ms − Mz(H ) ∼ (Hc − H )(d−4)/2 [228].
The opposite limit of weakly coupled large grains yields

〈m2〉 = 4K 2
1

(2K1 + µ0 M0 H )2
〈a2〉 +

8K 2
1 A

(2K1 + µ0 M0 H )3
〈a · ∇2a〉. (4.27)

Exploiting that a · ∇2a = ∇(a · ∇a) − (∇a)2 one finds that 〈a · ∇2a〉 is of the order of
〈a2〉/R2, where R is the average grain radius. Spin structures of the type (4.27) were first
investigated by Chudnovsky et al [64], although that work did not consider hysteretic M(H )
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curves. On the other hand,both (4.27) and [64] imply smooth boundaries, ignoring for example
the magnetization jumps discussed in section 4.5.

The effect of polycrystallinity on nanowires was investigated by Zheng et al [148].
The calculation yields an analytic expression for the magnetization as a function of the
wires’ structural and micromagnetic parameters. Since the magnetocrystalline anisotropy
of the considered Ni nanowires is much smaller than the shape anisotropy of the wires,
the linearization implied in (4.27) is a good approximation and the theoretical prediction
agrees quite well with experiment. The only exception is the vicinity of the coercivity, where
localization (section 4.7) and nonlinear effects (section 5.3) interfere.

In isotropic magnets, the absence of any net or ‘coherent’ anisotropy makes it impossible
to use series expansions such as (4.27). The spin structure of isotropic magnets has first been
studied in the context of the random-field problem, where individual atoms or particles (index
i ) are subjected to random fields Hi of magnitude H0. The original paper by Imry and Ma [232]
investigates random magnetic fields Hi characterized by 〈Hi〉 = 0 and 〈Hi H j〉 = H 2

0 δi j . If
the random field was the only consideration, the magnetization would follow the local field,
but spatial variations of the magnetization are opposed by the interatomic exchange. This
leads to magnetically correlated regions containing N atoms and characterized by the averages
〈H 〉 = 0 and 〈H 2〉 = H 2

0 /N . In other words, there remains a contribution of the order of
±H0/

√
N reminiscent of the standard deviation in statistical data analysis. The number N of

correlated spins depends on the competition between the random field (or random anisotropy)
and exchange energies. To determine N , one must minimize the average energy density η. In
the random anisotropy picture

η = A

L2
− K1

1√
N

(4.28)

where L is the magnetic correlation length. In d dimensions, the volume of the correlated
regions is of the order of Ld ≈ N Rd , where R is the grain radius. Minimizing the resulting
expression:

η = A

L2
− K

Rd/2

Ld/2
(4.29)

with respect to L yields the scaling relation

L ∼ R(δ0/R)4/(4−d) (4.30)

where δ0 = (A/K )1/2 is the wall-width parameter introduced in section 4.2. From (4.30) we
see that d = 4 is a marginal dimension below which small grains (R < δ0) yield intergranular
correlations (L > R and N > 1). In nanowires, the existence of an additional length scale
(wire diameter) leads to modifications of (4.30) and to crossover regimes [145].

Since K1/N1/2 can be considered as an effective anisotropy, the formation of correlated
regions (R < δ0) reduces the coercivity. Using (4.30) to determine N and exploiting that
Hc ≈ 2K1/Ms yields

Hc ∼ 2K1

µ0 Ms
(R/δ0)

2d/(4−d). (4.31)

In three dimensions, this means that the coercivity scales as R6 [13, 233]. As pointed out
by Herzer [24, 25], this random anisotropy nanostructuring is a powerful tool to reduce
the coercivity of soft magnetic materials. It is exploited, for example, in Fe–Si–B–Cu–Nb
alloys [23]. For R > δ0, the coercivity reaches a maximum value of the order of the anisotropy
field Ha = 2K1/µ0 Ms . For randomly oriented and interaction-free Stoner–Wohlfarth particles
Hc = 0.479Ha, but real-structure imperfections tend to reduce this value.
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The coercivity reduction due to random anisotropy is undesired in permanent magnets.
On the other hand, intergranular exchange improves the remanence by favouring parallel spin
alignment in neighbouring grains [17, 155–157, 236, 276]. This is known as remanence
enhancement. Note that isotropic structures are comparatively easy to produce, but the
remanent magnetization Mr of randomly oriented grains with uniaxial anisotropy is only
half the saturation magnetization Ms . Since energy product scales as M2

r , this amounts to an
energy-product reduction by a factor 4, and partial spin alignment (remanence enhancement) is
a valuable tool to increase the energy product. In iron-type (K1 > 0) and nickel-type (K1 < 0)

cubic magnets, the interaction-free Mr /Ms has values of 0.832 and 0.866, respectively, but
the low anisotropy of cubic magnets (see the appendix) inhibits the use of single-phase cubic
materials as permanent magnets. For soft regions sandwiched between hard planes with
random in-plane anisotropies, a ‘projective’ remanence enhancement Mr /Ms � 8/π2 is
obtained [67, 277].

Experimentally, both single-phase and two-phase magnets have been investigated:
examples of two-phase systems are nanocrystalline Nd2Fe14B/Fe3B–Fe and Sm2Fe17N3/Fe
composites produced by melt-spinning [17] and mechanical alloying [156], respectively. It is
important to note that traditional random anisotropy and random field theories [64, 151, 272]
focus on the ground-state behaviour of isotropic magnets. In less than four dimensions,
the ground state of random anisotropy magnets does not exhibit long-range ferromagnetic
order [151]. However, the ground-state behaviour of random anisotropy magnets is of little
consequence to the hysteresis [164] and, in spite of the absence of true ferromagnetism, some
of these structures exhibit huge coercivities.

In some cases, magnetic grains are coupled through a nonmagnetic or weakly
ferromagnetic matrix. Examples are the soft magnetic Fe–Si–B–Cu–Nb alloys discussed
in section 2.5 [23, 24, 278] and Sm–Co–Cu–Ti permanent magnets for high-temperature
applications [258]. In this case, the magnetization change is largely localized in the grain-
boundary region. Using the results of section 4.5 yields the effective exchange stiffness
Aef f = A′ R/D, where D is the surface-to-surface distance of the grains. In the case of a
matrix with a very small exchange coupling (T < TC), A′ is the exchange stiffness of the
matrix, whereas in a paramagnetic matrix A′ is an exponential function of D. The explicit
dependence of A on R modifies the scaling behaviour to L ∼ R(2−d)/(4−d) and Hc ∼ Rd/(4−d) .
Note that the exponent for L changes sign for d � 2. In this case, the exchange through
the grain boundary is not able to overcompensate the reduction of grain size and there are no
correlated grains with L > R.

4.7. Magnetic localization and cooperativity of magnetization reversal

A key feature of most magnetization processes in real nanostructures is the localization of
the reversal mode. The coherent-rotation and curling modes discussed in section 4.3 are
delocalized, that is, they extend throughout the magnet. Delocalized magnetization states
are favourable from the point of view of interatomic exchange, because the magnetization
gradient is small. However, exchange is not the only consideration, because local variations of
the magnetization cost some exchange energy but may be favourable from the point of view of
local anisotropy, K1(r). This competition leads not only to a reduction of the nucleation field
but also to a localization of the nucleation mode. In a sense, localization explains the failure of
the Stoner–Wohlfarth theory (section 4.3). In terms of the quantum-mechanical analogy, the
micromagnetic localization problem is equivalent to the problem of electron localization [279]
in disordered solids. From the localization behaviour of a one-dimensional electron gas [279]
it follows that arbitrarily weak disorder causes the localization of all magnetic eigenmodes
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Figure 17. Localization in weakly and strongly disordered magnets.

in one dimension [66]. Alternatively, micromagnetic delocalization can be interpreted as a
‘tunnelling’ through hard magnetic regions.

In practice, localization is caused by structural, geometrical and chemical imperfections,
which make it impossible to consider the magnets as perfect ellipsoids of revolution [8, 65, 254].
The degree of the localization and of the accompanying coercivity reduction depends on
the competition between the exchange and anisotropy energies. For a soft inclusion in
a very hard matrix, as considered in section 4.4, the localization is complete, that is, the
magnetic localization length L is equal to the size of the inclusion. In general, the localization
length depends on the structural correlation length (grain size), on the exchange stiffness, on
the amplitude of the anisotropy inhomogeneity and on the dimensionality of the problem.
Mathematically, the nucleation modes are the lowest-lying eigenfunctions of (4.16). Figure 17
shows two one-dimensional anisotropy profiles (full curves) and the corresponding nucleation
modes (broken curves). The stronger the anisotropy inhomogeneity, the smaller the localization
length.

An example is electrodeposited thin transition-metal nanowires (section 2.4).
The leading anisotropy contribution in soft and semihard nanowires is shape
anisotropy [38, 127, 144], but the Stoner–Wohlfarth predictions fail to describe the hysteresis
of the wires [38, 133, 145, 146, 148, 280]. First, the coercivity measured along the wire axis
ranges from about 0.2 to 0.3 T for Fe, from about 0.10 to 0.25 T for Co and from 0.04 to
more than 0.09 T for Ni, whereas the respective Stoner–Wohlfarth predictions Hc = Ms/2
are 1.07, 0.88 and 0.31 T [38, 133, 135, 144, 148, 281]. Second, experimental activation
volumes (section 5.3), which correspond to the localization length, are often much smaller
than the wire volume [38, 77, 145, 280, 282]. For example, Wegrowe et al [282] found that
their magnetization data could be fitted to the infinite-wire curling prediction only with the
paradoxical assumption that the shape of the ‘infinite cylinder’ is like a rugby ball, with an
aspect ratio of the order of 2:1.

In very thin wires, with radii down to less than 5 nm, it is possible to neglect the radial
variation (section 4.4) of the magnetization [38, 145, 147, 148, 283]. Let us consider a single
anisotropy inhomogeneity of the type K1(x) = K0 −�δK δ(x), where δK is the magnitude of
the anisotropy reduction and � is its extension along the z axis. Away from the perturbation,
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the mode decays exponentially, m(z) ∼ exp(−z/L) [145]. The localization length obeys

L = 2A

�δK
(4.32)

and the coercivity is

Hc = HA − δK 2�2

2Aµ0 Ms
. (4.33)

For zero disorder, the localization length goes to infinity and the reversal degenerates into
coherent rotation.

Equations (4.32) and (4.33) provide a qualitatively correct explanation of the observed
mode localization and coercivity reduction but does not aim at specifying the real-structure
origin of the localization. Typically, it reflects polycrystallinity, wire-thickness fluctuations,
chemical inhomogeneities or geometrical features at the wire ends, or a combination of these
factors. Note that the nanomagnetic localization discussed in this section is essentially a zero-
temperature effect. Thermal activation may, in principle, create a localized nucleus but, due to
the small Boltzmann factor exp(−EB/kB T ), this is an extremely unlikely event (section 5.3).

An alternative way of interpreting the real-space character of magnetization processes is to
consider the degree of cooperativity of magnetization processes [284]. Cooperative effects are
of great importance in advanced technology. For example, in high-density magnetic recording
media they lead to the formation of interaction domains, which may improve the thermal
stability but reduce the storage density. In permanent magnets the vanishing of the two-phase
shoulders in hysteresis loops can be considered as a cooperative effect [69, 284], as is the
above-discussed low coercivity of soft magnetic random anisotropy magnets.

From an atomic point of view, all magnetization processes are cooperative, because the
interatomic exchange suppresses the reversal of individual spins. In temperature units, the
exchange energy J associated with the switching of a single atomic spin is of the order of
1000 K, whereas the anisotropy energy per atom rarely exceeds a few tenths of a K. Since
A ≈ J/a and A/K1 = δ2

0 (section 4.2), the range of atomic cooperativity extends over a few
nanometres. On larger length scales, magnetization processes may or may not be cooperative.

By definition, the coherent-rotation and curling modes are cooperative. Weakly interacting
particles and grains are cooperative from the point of view of intraparticle magnetization
processes but noncooperative from the point of view of interparticle interactions. When
the interactions exceed a certain threshold, then the behaviour of the magnet changes
from noncooperative to cooperative. Examples are the difficult-to-realize curling limit in
macroscopic ellipsoids of revolution (section 4.3) and the strong-interaction limit of random
anisotropy magnets (section 4.6). Only a few problems involving cooperative effects have
exact solutions. An example is magnetostatic interactions in corrals of small dots [113].
Figures 18(c), (d) show various nucleation modes whose cooperativity is caused by flux closure.

A simple approach to describe interacting between particles or grains is to map the
interactions onto interaction fields. Examples are the micromagnetic mean-field model, the
Preisach model [285, 286] and approaches based on Wohlfarth’s remanence relation [287],
such as Henkel [288], delta-M [289, 290] and delta-H [291] plots. In the mean-field
approximation, the influence of neighbouring grains or particles is treated in terms of effective
fields He f f = H + λM , where the coupling parameter λ contains both magnetostatic and
exchange contributions. However, for large λ the model yields an unphysical hysteresis-loop
overskewing and unreasonably large coercivities [66]. In the context of the coercivity of
random anisotropy magnets, the limited applicability of the mean-field approximation has
been emphasized by Callen et al [276]. The reason is that cooperative phenomena cannot be
mapped onto interaction fields [284]. One example is that two strongly interacting particles
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Figure 18. Cooperative effects in nanodot arrays: (a) degeneracy of the coherent-rotation mode
in a small particle, (b) angular localization due to a defect, (c) two-particle cooperative mode, (d)
cooperative mode involving more than two dots and (e) flux closure as one origin of cooperative
behaviour.

behave like one particle and there is no point in adding the strong internal interaction field λM
to any external-field expression. Another example is figures 18(c)–(e), where the flux closure
contribution to the total energy is comparable to or even larger than the dot’s interaction-field
energy contribution.

A rough criterion for the applicability of interaction-field models is obtained from the
slope of the hysteresis loop at coercivity, χc = dM(Hc)/dH . When Ms/χc is smaller
than the interaction field, then the behaviour of the magnet is governed by cooperative
effects [67, 284]. Since Ms/χc can also be interpreted as a switching-field distribution,
cooperative and noncooperative regimes of magnetization reversal correspond to narrow and
broad switching-field distributions, respectively. In terms of figure 17, this is not surprising,
because broad switching-field distributions correspond to pronounced inhomogeneities and
therefore to strong localization.

5. Magnetization dynamics

An important aspect of nanomagnetism is the nonequilibrium character of the involved
magnetization processes. In fact, most dynamic magnetization phenomena of interest in
science and technology are of nanostructural origin. An exception is fast atomic-scale
processes, whose study is a separate issue but which affect nanomagnetism by realizing intrinsic
magnetism. For example, the change of the spontaneous magnetization of Fe on heating from
4.2 to 600 K reflects quantum-statistical processes realized on a scale of a few atoms and is
not accompanied by hysteresis. Nanoscale processes are, in general, much slower, with times
ranging from about 1 ns in some high-frequency experiments to many millions of years in
magnetic rocks.

On an atomic scale, the magnetic structure is driven by intra- and interatomic exchange
and by interatomic hopping, and typical energy differences between 0.1 and 1 eV lead to
characteristic times h̄/E of about 10−14 s. The corresponding fast equilibration times make
it possible to consider intrinsic properties as equilibrium properties described by the partition
function Z = �i exp(−Ei/kB T ). Due to the implicit involvement of the partition function,
the energy functional (4.1) is also known as the micromagnetic free energy [8, 227]. Typical
magnetostatic and anisotropy energies per atom, about 0.1 meV, correspond to times of the
order of 10−10 s. This governs a variety of precession, resonance and damping phenomena of
importance in nanomagnetics.

Aside from relatively fast processes, there are thermally activated jumps over free-energy
barriers giving rise to a time dependence of extrinsic magnetic properties. For example,
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freshly magnetized permanent magnets lose a small fraction of their magnetization during the
first few hours (magnetic viscosity} and the coercivity depends on the sweep rate dH/dt of the
external magnetic field [8, 246, 292]. Since thermal activation involves the Boltzmann factor
exp(−Ea/kB T ), extrinsic equilibration times vary over many orders of magnitudes, from
nanoseconds or milliseconds in superparamagnetic particles to millions of years in magnetic
rocks.

5.1. Fundamental equations

The time-dependent many-body Schrödinger equation ih̄∂|�〉/∂ t = H |�〉 can, in principle,
be used to predict the evolution of any physical system, but this method is not feasible in
practice5. First, the deterministic character of the Schrödinger equation forbids irreversible
processes. Second, the large number of involved degrees of freedom, such as lattice vibrations,
complicates the description of real magnetic systems. To make meaningful predictions about
relevant magnetic degrees of freedom, such as the position of a domain wall, one must treat
the irrelevant degrees of freedom as a heat bath. A simple classical analogue of this ‘coarse
graining’ [293–295] is a system of masses coupled by harmonic springs. The system has
a recurrence time τrec scaling as 1/�ω, where �ω is the system’s smallest eigenfrequency
difference. For any finite system the recurrence time is finite, but for an infinite number of
degrees of freedom, corresponding to a heat bath, �ω = 0 and τrec = ∞.

The coarse-graining procedure provides the justification for various nonequilibrium
approximations. One example is the Landau–Lifshitz equation:

dM

dt
= γM × He f f − 1

M2
s τ0

M × (M × He f f ) (5.1)

where γ is the gyromagnetic ratio, τ0 is an inverse attempt frequency of the order of
10−11–10−9 s [11, 292, 296] and µ0He f f = −∂ E/∂M(r) is a local effective field [192, 297–
299]. Equation (5.1), and similar relations such as the Gilbert and Bloch–Bloembergen
equations, describe the precession of the magnetization around He f f as well as its relaxation
towards the local or global energy minima associated with He f f . However, they are not able
to describe thermally activated jumps over energy barriers. An equation describing thermal
activation is the Langevin equation:

∂s

∂ t
= − �0

kB T

∂ E

∂s
+

√
2�0ξ(t). (5.2)

Here s is a magnetic phase-space vector and the random forces ξ(t) obey 〈ξ(t)〉 = 0 and
〈ξ(t) · ξ(t ′)〉 = δ(t − t ′). The probability distribution belonging to (5.2) obeys the diffusion-
type magnetic Fokker-Planck equation [295, 300, 301]:

τ0
∂p

∂ t
= 1

kB T

∂

∂s

(
P

∂ E

∂s

)
+

∂2 P

∂s2
. (5.3)

Both (5.2) and (5.3) can be derived from a phenomenological master or rate equation:

∂ P(s)

∂ t
=

∫
[W (s, s′)P(s ′) − W (s ′, s)P(s)] ds′ (5.4)

where the W (s, s ′) = W (s ′ → s) are appropriately chosen transition rates. A simplified
version of the master equation, valid for transitions between two energy minima, is ∂ P1/∂ t =
W12 P2 − W21 P1 and ∂ P2/∂ t = −W12 P2 + W21 P1. Kramers’ escape-rate theory [300, 302]
5 An exception is quantum tunnelling, which dominates thermally activated magnetization processes at very low
temperatures.
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shows that the transition rates are proportional to the Boltzmann factor exp(−Ea/kB T )

so long as Ea � kB T . The theory was originally used to describe chemical reaction
kinetics but later applied to magnetism, where it is also known as the Arrhenius–Néel or
Néel–Brown theory. In equilibrium, (5.2)–(5.4) all reproduce the Boltzmann distribution
P(s) = (1/Z) exp(−E(s)/kB T ), where Z = ∫

exp(−E(s)/kB T ) ds is the partition function,
but there is no closed solution for nonequilibrium magnetization processes.

5.2. Spin waves

Since Bloch’s 1930 article on the temperature dependence of spontaneous magnetization
of ferromagnets [303], spin waves have attracted much attention in the solid-state
and magnetism communities [204, 304, 305]. In particular, Bloch’s spin-wave
arguments indicate that there is no long-range isotropic ferromagnetism in two or less
dimensions [8, 117, 151, 181, 184, 186, 303]. In Bloch’s original approach, the long-
wavelength magnetization reduction due to spin waves is proportional to the integral

∫
kd−3 dk,

which exhibits a long-wavelength divergence for d � 2. On the other hand, the behaviour
of experimental wires is reminiscent of bulk ferromagnets, and the question arises how low-
dimensional effects manifest themselves in magnetic nanostructures.

Ignoring damping effects, τ0 = ∞ in (5.1), the resonance is described by dM/dt =
γ (M × He f f ). For homogeneously magnetized ellipsoids of revolution, the effective field is
equal to the applied field H = Hez plus the anisotropy field Ha and the resonance problem
is solved by the diagonalization of a 2 × 2 matrix. This uniform or ferromagnetic resonance
(FMR) yields resonance frequencies determined by [165]

ω2 = γ 2(H + Hax − Haz)(H + Hay − Haz) (5.5)

where ex and ey correspond to the principal axes of the 2 × 2 matrix. In systems with
rotational symmetry, such as perfect nanowires aligned parallel to the external magnetic field,
this equation degenerates into

ω = γ (H + 2Kef f /µ0 Ms) (5.6)

where Kef f = K1 + µ0 M2
s /4. Note that the spin-wave problem is closely related to the

nucleation problem, because the coherent-rotation mode is essentially a ω = 0 spin-wave
mode [192]. Nonuniform modes, that is, spin waves in a narrower sense, involve an exchange
term similar to that in (4.16) [192, 298, 299]. The electron spin resonance (ESR) of these
modes is known as spin-wave resonance (SWR), in contrast to the simpler FMR described
by (5.5) [165].

Spin-wave type excitations in perfect nanodots and nanowires have recently been
studied by a number of groups [306–312]. There are, for example, spin-wave quantization
effects associated with the nanoscale dimensions of the magnet [308, 311, 312]. In
addition, magnetization modes, such as nucleation modes, exhibit a pronounced real-structure
dependence [8, 308]. Figure 19 shows various types of spin-wave modes in nanowires.
In very thin nanowires, where R < Rcoh , curling-type modes can be ignored [38, 145]
and the perpendicular magnetization components obey Mx = Msm(z) cos(ωt) and My =
Ms m(z) sin(ωt). The function m(z) is given by

−2A
d2m

dz2
+

(
2Kef f (z) + µ0 Ms H − ω

γ

)
m = 0. (5.7)

For ω = 0, this equation reduces to (4.16), whereas dm/dz = 0 reproduces (5.6).
Mathematically, (5.7) is a well-known random potential eigenvalue problem, which can be
solved numerically or by transfer-matrix methods. Figures 17 and 19(f) show some examples.
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Figure 19. Spin-wave modes in nanowires: (a) and (d) coherent mode, (b) curling mode, (c)
bulk mode with k⊥ > 1/R, (e) mode with k‖ > 0 and (f) localized nucleation mode. The bulk
modes are essentially superpositions of plane waves. Since the diameter of typical nanowires is
much larger than the interatomic distance, there are many excited perpendicular modes and the
finite-temperature magnetization Ms (T ) is reminiscent of bulk magnets.

An interesting point is that all modes are localized, as one can expect from the quantum-
mechanical analogue of a one-dimensional electron gas in a random potential [279]. The
localization length depends on ω and is largest for high frequencies. The real-space meaning
of figure 17 is illustrated in figure 19(f)

As discussed, for example, in [204], the uniform FMR resonance mode (5.5) corresponds
to the spatially uniform precession of magnetization, with a spin-wave (magnon) wavevector
k = 0. In contrast, the modes predicted by (5.7) are generally nonuniform. To excite such
a mode, the magnetic field must have a nonzero projection onto the mode, which is usually
the case for modes of the type shown in figure 19(f). In traditional SWR, this projection is
realized by surface anisotropies. Due to structural disorder, excitations of the type shown in
figure 19(f) exhibit a resonance-line broadening, but this broadening is qualitatively different
from the inhomogeneous linewidth broadening used, for example, to gauge the homogeneity
of the applied magnetic field. The difference is the involvement of the exchange term, which
is important due to the nanoscale nature of the problem [308].

Another aspect of spin waves in nanowires is their quantization. In the Bloch theory [303],
each spin wave yields a magnetization reduction corresponding to the switching of a single
spin, so that Ms (T ) is obtained by k-space integration over all excited spin waves. The finite
radius of the wires, about 5 nm [38], leads to a radial spin wave quantization in terms of
Bessel functions [308] and nonzero level spacings. This means that curling-type and higher-
order excitations can be ignored at very low temperatures. In contrast, the large length of
typical nanowires, about 1000 nm [38], means that spin waves travelling parallel to the wire
form a quasi-continuum. Due to the finite wire radius, these waves occupy a comparatively
large fraction of the spin-wave phase space, and even at low temperatures a large number of
them are excited. The corresponding magnetization contribution scales as M0 − Ms (T ) ∼
(T/TC)(δef f /a), where a is the interatomic distance [308] and δef f = (A/Kef f )

1/2. For
fictitious isotropic magnets, where Kef f = 0 and δe f f = ∞, the magnetization collapses, as
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Figure 20. Dynamic hysteresis-loop effects: (a) magnetic viscosity and (b) sweep rate dependence.

expected from Bloch’s original theory [303]. In fact, it can be shown that the wires do not
exhibit true ferromagnetism but form correlated regions with macroscopically large correlation
lengths scaling as exp(−4π Kef f δw R2/kB T ).

5.3. Magnetic viscosity and sweep rate dependence of coercivity

The temperature dependence of extrinsic properties reflects two mechanisms. First, the atomic-
scale intrinsic temperature dependence of K1, A and Ms translates into a static or ‘intrinsic’
temperature dependence of the free-energy barriers. Second, thermally activated jumps over
metastable free-energy barriers yield a dynamic or ‘extrinsic’ contribution. Thermally activated
jumps yield only small corrections, because typical energy barriers in ferromagnets are much
larger than kB T , but they affect the long-time stability of permanent magnets and recording
media [32, 76, 313]. For a constant field, dH/dt = 0, the magnetization corrections are known
as magnetic viscosity, whereas dH/dt 	= 0 yields a sweep rate dependence of the coercivity.
Figure 20 illustrates the difference between sweep rate and magnetic viscosity experiments.

To describe magnetic viscosity it is convenient to consider generalized magnetization
variables x , such as the domain-wall position in pinning-type magnets (figure 12) and the
coherent-rotation angle θ of a fine particle. Another comparatively transparent case is two-
particle magnets [284, 295, 314, 315]. In more complex systems, such as interacting particles
and bulk magnets, x describes eigenmodes of the magnetization reversal [284, 316]. In general,
the modes contain localization and cooperative effects (section 4.7) as well as the effect of
magnetostatic self-interactions, which are important, for example, in thin films [317].

Using a two-level master equation and ignoring the typically very small probability of
jumps against the external field, the equation of motion is τdx/dt = x0 − x , where x0 is the
equilibrium value of x . The relaxation time is given by the Arrhenius (or Néel–Brown) law

τ = τ0 exp

(
Ea

kB T

)
(5.8)

where τ0 is a microscopic attempt time of the order of 1 ns [11, 246, 292, 296, 301, 318].
In laboratory experiments, magnetization processes are often considered as frozen when
τ � 100 s. In addition to the leading energy dependence of τ , there is an effect due to
the activation entropy [295]. Replacing Ea by Fa = Ea − T Sa changes τ0 to τ0 exp(−Sa/kB).
This means that a large activation entropy, corresponding to many available phase-space paths,
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reduces the relaxation time. However, since Ea � kB T , entropic contributions are often
negligible.

For time-independent energy barriers, the equation of motion yields an exponential decay
of the magnetization variable. Real-structure averaging over all relaxation times (5.8) leads to
a logarithmic time dependence of the magnetization [8, 32, 246, 264, 318, 319]:

M(H, t) = M(H, t0) − S ln(t/t0). (5.9)

This is known as the logarithmic magnetic-viscosity law. It determines, for example, the
stability of the information stored in magnetic and magneto-optical recording media [32] and
yields small time-dependent magnetization corrections in permanent magnets [8]. For an
ensemble of noninteracting particles, x can be interpreted as the magnetization M = Mz of
the individual particles, and the logarithmic law is obtained by averaging over

M(t) = −Ms + 2Ms exp(−t/τ). (5.10)

Exploiting (5.8) and introducing an energy-barrier distribution P(Ea) yields

M(t) = −Ms + 2Ms

∫ ∞

−∞
P(Ea)e−(t/τ0) exp(−Ea/kB T ) dEa. (5.11)

Next we exploit that α exp(β E) = exp(β E + ln α) and exp(− exp(−x/ε)) ≈ �(x), where
ε � 1 and �(x) is the step function, defined by �(x < 0) = 0 and �(x > 0) = 1. The result
of the calculation is (5.9) with the magnetic-viscosity constant

S = 2kB T P(0)Ms . (5.12)

The close relationship between the energy barrier distribution and the logarithmic magnetic-
viscosity law has been known for many decades [246]. One explicit example is the assumption
of a rectangular energy-barrier distribution of width W , where P(0) = 1/W [246]. Note
that (5.9) breaks down in the limits t = 0 and ∞; for some expressions with improved
asymptotics see [192, 320, 321].

An important aspect of magnetic viscosity is its field dependence. For example, S(H )

tends to exhibit a maximum near the coercivity. To explain this finding one must consider the
energy-barrier density P , the irreversible part χirr of the susceptibility and the field derivative
of the energy barriers. Since dM/Ms = 2P dE , χirr = ∂M/∂ H and dEa = (∂ Ea/∂ H ) dH ,
the logarithmic law can also be written as [296]

M(t) = M(tre f ) − kB T
χirr

(∂ Ea/∂ H )
ln(t/tre f ) (5.13)

where tre f is a reference time. This equation is frequently used to rationalize energy-barrier
effects [32, 249, 264, 296]. A phenomenological energy-barrier expression is

Ea(H ) = K0V0

(
1 − H

H0

)m

(5.14)

where K0, V0 and m are micromagnetic parameters. V0 is closely related to the switching or
Barkhausen volumes of the magnet (see below). In some cases it is possible to derive (5.14)
from the magnet’s real structure. For example, aligned spherical Stoner–Wohlfarth particles
are characterized by K0 = K1, V0 = 3π R3/4, m = 2 and H0 = 2K1/µ0 Ms . Note that typical
anisotropy constants of 1 MJ m−3 and activation volumes of 10 × 10 × 10 nm3 correspond to
a temperature equivalent of K0V0 ≈ 100 000 K. This is the reason for the thermal stability of
magnetization of most nanostructures.

Very small particles, where K0V0 is comparable to kB T , exhibit a rapid decay of
the magnetization, which is known as superparamagnetism [14, 322, 323]. Defining
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superparamagnetism by a waiting time of τ = 100 s yields, with (5.8) and (5.14), the zero-
field stability condition K0V0/kB T � 25, where K0V0/kB T ≡ ξ is referred to as the stability
parameter. Thermal stability for 10 y corresponds to ξ = 40.

Since t = τ is the time necessary to jump over the energy barrier, equation (5.8) can be
used to estimate the coercivity. Writing it as

Ea(Hc) = kB T ln(τ/τ0) (5.15)

and substituting (5.14) yields [8, 32, 292, 295, 324]

Hc = H0

(
1 −

(
kB T

K0V0
ln(τ/τ0)

)1/m)
. (5.16)

Improving on (5.16) by a master-equation approach yields a relatively unimportant factor of
ln 2 = 0.693 [292], which is usually incorporated into τ0. A characteristic feature of this
equation is the involvement of a term T 1/m in addition to the intrinsic temperature dependence
K0(T ).

Going beyond the waiting-time expression (5.15) and explicitly considering the effect of
the sweep rate η = dH/dt reveals that ln(τ/τ0) ≈ 25 must be replaced by a complicated m-
dependent expression smaller than ln(τ/τ0) by about 20% [325]. The sweep rate dependence
of the coercivity can be rationalized in terms of a fluctuation field H f [252, 326], as illustrated
in figure 20(b). The corresponding coercivity expression is

Hc(η) = H (ηref ) + H f ln(η/ηre f ) (5.17)

where ηre f is a reference sweep rate. In the case of nonlinear energy barriers, where m 	= 1, this
equation can be derived, for example, by taking into account that η ∼ 1/τ and linearizing (5.16)
with respect to ln(τ/τre f ) [295].

Equation (5.14) shows that thermally activated magnetization processes involve a
Barkhausen-type switching volume V0. For noninteracting particles, this volume is equal to
the particle or grain volume, but cooperative and localization effects tend to increase and
decrease the volume, respectively [32, 283, 284]. Experimentally, the switching volume
manifests itself as an activation volume V ∗. Both sweep rate and magnetic-viscosity
measurements can be used to determine the activation volume. Assuming a linear law
(m = 1) of the type Ea(H ) = µ0 Ms V ∗(H0 − Hc) and using experimental fluctuation
fields determined using (5.17) yields V ∗ = kB T/µ0 Ms H f . A method to derive V ∗ is to
exploit the relation µ0 Ms V ∗ = −∂ Ea/∂ H [32, 296, 327–329], where the derivative is taken
at coercivity. For arbitrary m, this yields a T 1/m temperature dependence of the activation
volume [8, 283, 295]. In the case of magnetic-viscosity measurements, equation (5.13)
yields V ∗ = kB T χirr/Ms S [32, 249, 296, 327, 329]. Typical orders of magnitude of room-
temperature activation volumes are 500 nm3 in permanent magnets [249] and 2000 nm3 in
transition-metal nanowires [283], but the extrinsic character of V ∗ leads to a strong real-
structure dependence.

The question remains how the energy barriers (5.14) relate to the real structure of the
magnet. A simple approach, based on ideas developed in catastrophe theory [330], is to use
an expansion of the micromagnetic energy. Including linear, quadratic and cubic terms, the
energy can be written as

E(x) = a0 + a1x +
a1

2
x2 +

a3

3
x3 − b0 H x . (5.18)

Here x is the generalized magnetization variable of the reversal mode. The phenomenological
parameters a0, a1, a2, a3 and b0 describe the real structure of the magnet; they depend on
K1(r, T ), A(r, T ) and Ms (r, T ) and must be determined separately.
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Figure 21. Multidimensionality of the coercivity problem: only the trajectory corresponding to
the lowest-lying mode contributes to the switching.

Figure 21 illustrates the meaning of (5.17) for two exemplary normal modes and elucidates
their role in magnetization reversal. For reverse fields |H | < H0, the energy exhibits one
maximum and one metastable minimum, both obeying ∂ E/∂x = 0. The static switching
field H0 corresponds to the vanishing of the metastable minimum when ∂ E/∂x = 0 and
∂2 E/∂x2 = 0. Using these relations and (5.18) yields, after a short calculation, an equation of
the type (5.14) with m = 3/2. This exponent, first derived by Néel [331], is quite common and
describes a variety of coherent and incoherent magnetization processes. Examples are strong
domain-wall pinning, misaligned Stoner–Wohlfarth particles and nucleation in polycrystalline
nanowires [8, 264, 283, 295, 316, 319, 326]. An exponent m = 2 is obtained for energy
landscapes where a3 = 0 by symmetry. It is then necessary to include fourth-order terms
and the power-law exponent changes to m = 2. A typical example is the Stoner–Wohlfarth
expression (4.8), whose expansion does not contain odd-order terms. Experimental values of
m tend to vary between 1.5 and 2 [283, 318].

Linear laws, where m = 1, are often used as simple phenomenological models but
have no sound physical basis [8, 325, 326, 332]. Nonanalytic energy landscapes E(x)

could, in principle, establish a linear law [319, 326], but so far it has not been possible to
derive it from realistic energy landscapes [147, 325, 326, 332]. Sharp interfaces and other
atomic-scale imperfections [243] can be considered as nonanalytic features, but atomic-scale
structural features are convoluted with the domain-wall profile, as exemplified by (4.13). A
good example is the pinning of a domain wall by a small ‘needle-shaped’ δ(x) anisotropy
inhomogeneity, where the smooth domain-wall fine structure destroys the nonanalyticity of
the energy landscape and re-establishes m = 3/2. Other approaches to derive m = 1 start
from unrealistic [333, 334] or ill-defined [335] energy landscapes.

It is important to note that thermally activated switching processes involve paths close to
the lowest-lying reversal mode [8, 38, 192, 246, 316]. In figure 21(b), this mode is drawn as
a full curve. Other reversal modes are not forbidden by the Boltzmann term exp(−Ea/kB T ),
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Figure 22. High-temperature modes in spin glasses: (a) original magnetization m = Mz/Ms and
(b) gauge-transformed mode m′.

but they are extremely unlikely because they involve unreasonably large energy differences
Ea � kB T . One example is the broken curve in figure 21(b). As a consequence, ‘giant
fluctuations’ associated with arbitrary energy barriers can safely be ignored [8, 38, 192]. In
particular, modes with higher nucleation fields, such as those proposed in [336], are irrelevant
to the problem of ferromagnetic hysteresis [192]. Simplifying somewhat, the reverse magnetic
field H = −Hez field pushes the magnet close to the vanishing of the metastable local energy
minimum and reduces the energy barrier until thermally activated jumps become effective.

5.4. Freezing behaviour

Magnetic hysteresis is a nonequilibrium phenomenon related to glass-like freezing. Well-
known examples of magnetic freezing processes are the superparamagnetic freezing of small
particles and ferrofluids [15, 72, 163] and spin glasses [13, 151, 160]. The magnetization
dynamics of ferrofluids is characterized by the distinction between Brownian and Néel
relaxations. Brownian relaxation refers to the mechanical rotation of the particles in a magnetic
field, whereas Néel relaxation involves jumps over magnetic energy barriers (section 5.3); the
latter dominates in small nanoparticles.

In spin glasses, random interatomic exchange yields very complicated ground-state
configurations, but since coercivity is a nonequilibrium problem, the spin-glass character of
the ground state is of little consequence to the coercivity [164]. To assimilate the spin-glass
problem to the problem of the magnetism of disordered ferromagnets, one can use a Mattis-
type gauge transformation of the spin-glass Hamiltonian −�ik Jiksi sk . Introducing gauge-
transformed spins s′

i = τi si , where τi = ± 1 [161], it is straightforward to make the majority
of all bonds ferromagnetic, 〈J ′

ik 〉 = 〈τi Jikτk〉 > 0, although the remaining nonferromagnetic
bonds give rise to some frustration [337]. Approaching the spin-glass freezing from high
temperatures, the problem can be solved by diagonalizing the interaction matrix. Figures 22(a)
and (b) show the corresponding excited modes mi = 〈si 〉 and 〈s′

i 〉, respectively, for a two-
dimensional Ising spin glass. In general, the modes are localized, but on further cooling less
localized modes freeze and the modes start to interact in a complicated way reminiscent of
what is known as Griffiths singularities [338] and spin-glass droplets [339].

The appearance of ‘frozen’ modes below T0 = J0/kB T , where J0 is the largest eigenvalue
of Jik (or, alternatively, J ′

ik) affects the dynamics of the system. From figure 22(b) we see that
the modes can be considered as quasi-ferromagnetic regions containing N spins. In ideal
ferromagnets, N = ∞ below TC ≈ T0 corresponds to nonergodic behaviour [151]. In spin
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glasses, N(T ) remains finite on crossing T0, but due to the involvement of a finite number N
of spins there are cooperative blocking effects. For simplicity, let us consider N coupled spins
characterized by one rotational degree of freedom φi per spin (i = 1 . . . N). The dynamics of
the system is then described by the Langevin equation

∂φi

∂ t
= − �0

kB T

∂ Etot

∂φi
+

√
2�0 ξi (t). (5.19)

In this set of N equations, �0 = 1/τ0 is a microscopic attempt frequency and ξi (t) is a delta-
correlated random force obeying 〈ξi (t)〉 = 0 and 〈ξi (t)ξ j (t ′)〉 = δi jδ(t − t ′). The total energy
Etot contains both on-site anisotropy and interactions Ji j . In general, the interactions lead
to very complicated scenarios, but there are two exceptions. In the absence of interactions,
Ji j = 0, the spins are independent and (5.19) can be replaced by

∂φ

∂ t
= − �0

kB T

∂ E

∂φ
+

√
2�0 ξ(t) (5.20)

where E(φ) is the single-spin energy. In the limit of strong ferromagnetic exchange
interactions, all spins are parallel and therefore φi = φ. Adding all contributions ∂φi/∂ t
in (5.19) yields

N
∂φ

∂ t
= −N

�0

kB T

∂ E

∂φ
+

√
2�0 N ξ(t). (5.21)

In this equation, N enters the random-force term in a square-root form, because
�i� j 〈ξi (t)ξ j (t ′)〉 = Nδ(t − t ′). Physically, the thermal forces acting on the coupled
spin system average to zero, except for a comparatively small fluctuation contribution.
Equation (5.21) can be derived from (5.20) using the substitutions �0 → �0/N and E → E N .
In other words, exchange coupling enhances the energy barriers and reduces the attempt
frequency. Both effects lead to reduction of the relaxation rate.

Since the number of coupled spins strongly increases with decreasing temperature (from
a very few spins above T0 to many spins below T0), the slowing down of the relaxation is very
pronounced. As analysed for the one-dimensional case, the temperature dependence of the
relaxation rate is stronger than exponential, reminiscent of the Vogel–Fulcher–Tamman (VFT)
law � = �0 exp(−Ea/kB(T − Tg)) [337]. The energy barrier appearing in the present theory
is proportional to the anisotropy constant 0 < K < ∞. By contrast, typically considered
Heisenberg and Ising spin glasses correspond to the rather unrealistic limits K = 0 and ∞,
ignoring and misinterpreting the roles of the anisotropy, respectively. Note, finally, that the
present theory does not require order parameters quadratic [151, 160] in the magnetization.
This shows that spin glasses can essentially be considered as partially frustrated ferromagnets,
although the ground state is not necessarily ordered.

5.5. Conduction phenomena and spin electronics

The mean free path of conduction electrons is often of the order of a few or several
nanometres, so that magnetic nanostructures are of interest as magnetic sensors and in spin
electronics [28, 29, 40, 41, 51, 114, 282, 340]. In sensors, various magnetoresistive effects are
exploited. Anisotropic magnetoresistance (AMR) reflects the distortion of electron clouds due
to spin–orbit coupling, similar to that illustrated in figure 7. Giant magnetoresistance (GMR)
is caused by nanoscale magnetization inhomogeneities ∇ · M (section 4.5) and observed in
multilayers (spin valves), granular materials and nanowires [28, 29, 40, 51, 142, 143, 282].
Similar magnetization inhomogeneities occur in magnetic nanojunctions (tunnel junctions and
contact junctions) [43, 51, 116, 341, 342]. In multilayers, the spin structure is determined
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by RKKY-type interactions through nonmagnetic metallic layers [48, 50]. From section 4.5,
especially from figures 15 and 16, we see that only a part of the magnetization gradient is
realized in the boundary or junction region. This puts an upper limit to the scattering ability.
For example, an interface with zero thickness has the same spin structure as a bulk magnet and
a quite low domain-wall scattering.

A class of sensor materials with particularly interesting and versatile properties is
transition-metal oxides. Powder magnetoresistance (PMR) is an interface effect (section 4.5)
observed, for example, in compacted CrO2 particles [52], whereas colossal magnetoresistance
(CMR) exploits temperature-dependent electronic-structure changes realized in nanoscale
regions [41, 53–55]. A variety of oxides, such as CrO2 and (La0.7Sr0.3)MnO3, and some
intermetallics, such as the semi-Heusler alloy NiMnSb, are half-metallic ferromagnets, that is,
the density of states at the Fermi level is zero for one spin channel [40, 41, 269]. Ideally, this
amounts to an infinite magnetoresistance ratio, but in reality this ratio is greatly reduced by
mechanisms such as finite-temperature spin mixing in the bulk, probably reflecting magnon–
phonon coupling [340], and at nanojunctions [342].

Phenomena of interest in the field of magnetoresistive sensors are exchange biasing
unidirectional anisotropy. The field has its origin in the discovery of exchange-biased hysteresis
by Meiklejohn and Bean [343], who investigated Co nanoparticles surrounded by CoO. By
definition, there are only even-order anisotropy terms, but unidirectional anisotropies—which
are observed as an asymmetry (shift) of the hysteresis loop, as in figure 9(d)—may occur
due to antiferromagnetic phases, such as NiO and CoO, relativistic Moriya–Dzialoshinskii
interactions [13, 151] and particular micromagnetic regimes [344]. Recently, exchange biasing
has attracted much attention in magnetic recording and thin-film technology, because it can
be used to tune the behaviour of magnetic recording heads [345–350]. These phenomena are
also known as exchange anisotropy, but it should be kept in mind that exchange is essentially
an isotropic phenomenon: like ordinary magnetocrystalline anisotropy, anisotropic exchange
is a small correction caused by spin–orbit coupling.

6. Summary and conclusions

In this review, we have discussed the properties of a broad range of magnetic nanostructures.
Varying size, geometry and chemical composition of the structures makes it possible to realize
properties not achievable in single-phase bulk and thin-film materials. Some examples are the
energy-product enhancement in suitably nanostructured two-phase magnets, where adding a
soft magnetic phase improves the hard magnetic performance, multilayered and granular spin-
value structures, nanostructured soft magnets, and advanced magnetic-recording media. Due
to the very limited range of naturally occurring compounds, the importance of nanostructures
in technology and materials science is likely to increase in the future, and many research groups
are or will be involved in this development.

From a scientific point of view, the magnetism of nanostructures is intermediate between
atomic-scale magnetism and macroscopic magnetism. Both intrinsic properties, such as
magnetization and anisotropy, and extrinsic properties, such as coercivity and energy product,
are affected by nanostructuring, but the length scale on which this happens depends on
the phenomenon considered. Intrinsic properties, such as spontaneous magnetization,
Curie temperature and magnetocrystalline anisotropy, reflect comparatively strong quantum-
mechanical and spin–orbit interactions. They are realized on atomic length scales and therefore
well defined for nanostructures. Extrinsic properties, such as coercivity, involve rather weak
but long-range magnetostatic interactions. They are realized on larger length scales and
exhibit pronounced real-structure dependence. The competition of the energy contributions is
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realized on a scale of the order of a0/α = 7.52 nm and it is therefore not possible to reduce
nanomagnetism to atomic phenomena, nor can one consider nanoscale phenomena as a special
case of macroscopic magnetism.

The atomic-scale origin of intrinsic properties does not mean that surface and finite-
size effects are unimportant. A particularly subtle property is the Curie temperature, which
describes the onset of ferromagnetism and involves long-range thermodynamic fluctuations. In
a strict sense, the Curie temperature of finite bodies is zero, but the nonequilibrium character of
practically encountered magnetic phenomena and the low energy differences associated with
long-range thermodynamic fluctuations mean that particles or grains larger than about 1 nm
are quasi-indistinguishable from true ferromagnets. For this reason, nanostructuring cannot
be used for nanoscale Curie temperature improvements.

An important micromagnetic aspect of nanostructures is that structural length scales
and those of spatial magnetization changes are generally different. Only in very small and
noninteracting particles, where the Stoner–Wohlfarth theory applies, can the two length scales
agree. General magnetization modes may be localized (confined to a small region of the
structural unit) or cooperative (involving several structural units). An example of localization
is the nucleation of reverse domains in nearly perfect ellipsoids of revolution, whereas
cooperative behaviour is encountered, for example, in random anisotropy magnets of interest
in soft magnetism. Localization and cooperativity are caused by structural imperfections and
magnetic interactions, respectively, and the localization length is determined by the competition
between interactions and disorder. A lower bound, realized in strongly inhomogeneous
magnets with high anisotropy, is about 5 nm. The concept of localization equally well applies
to excited magnetization modes (spin waves). For infinite wires, the analogy to the Anderson
localization in less than two dimensions means that not only the nucleation mode but also all
excited modes are localized.

While considering extrinsic properties it important to distinguish between equilibrium
and nonequilibrium properties. The equilibrium behaviour of magnetic nanostructures, as
epitomized by the critical single-domain radius, is of little relevance when hysteretic effects are
important. For example, in highly anisotropic rare-earth transition-metal permanent magnets,
the critical single-domain size is of the order of 1 µm, but this does not mean that the reversal
in a particle having a diameter of 500 nm is Stoner–Wohlfarth-like. In fact, nature finds its way
by exploiting minor imperfections, realizing reversal by nucleation on a length scale closer to
the above-mentioned 5 nm. In fact, even in perfect particles of this size the reversal is realized
by curling rather than by coherent rotation.

From a structural point of view, surfaces, interfaces and bottlenecks (contact junctions)
have a strong impact on nanomagnetism. One issue is that exchange at grain boundaries affects
the coupling between nanograins and, indirectly, the extrinsic properties of the structures. In
the case of misaligned grains, or of grains subjected to external forces of different directions,
reduced grain-boundary exchange leads to a quasi-discontinuity of the magnetization. In
contrast, anisotropy changes in the grain-boundary region have no major effect on the spin
structure, because the effect of anisotropy inhomogeneities averages over at least a few
nanometres. Only a part of the magnetization gradient is realized in the grain-boundary region
or at the junction, which puts an upper limit to the usable spin-dependent scattering ability.

A particularly interesting dynamic aspect of magnetic nanostructures is the effect of finite-
temperature excitations. Intrinsic properties correspond to a very fast equilibrium, whereas
the equilibration times of extrinsic properties cover a broad range, from about one nanosecond
in soft magnetic resonance experiments to millions of years in magnetic rocks. In a sense,
nanomagnetic equilibration times are intermediate between atomic-scale equilibration times
and equilibration times of perfect bulk magnets, and widely encountered ‘bulk’ phenomena
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such as magnetic viscosity have their origin in nanoscale real-structure features. The underlying
mechanism is thermally activated jumps over nanomagnetic energy barriers. To some extent,
the dynamic behaviour depends on whether sweep rate or magnetic-viscosity experiments
are performed, but the Boltzmann factor determining the timescale of extrinsic dynamics is
essentially given by the involved (free) activation energy. This results in small magnetic-
viscosity corrections to the leading intrinsic contribution. In terms of the external magnetic
field, the energy barriers obey a power law with a symmetry-dependent exponent of 3/2 or 2.
Since the phase-space trajectories responsible for thermally activated magnetization reversal
are very close to static trajectories, ‘giant’ thermodynamic fluctuations involving arbitrary
modes can safely be ignored. Similar counterarguments apply to power laws with other
exponents, including linear laws.

In conclusion, magnetic nanostructures exhibit various scientifically interesting and
technologically important deviations from bulk and thin-film magnets. The search for materials
with improved intrinsic properties continues to be of scientific and technological interest,
but a main thrust of research is the creation, understanding and exploitation of artificial
nanostructures. This materials-by-design strategy makes it possible to produce materials and
functional components not found in nature. An end to the search for new geometries and
microchemistries is not yet in sight, and fully realizing the range of magnetic nanostructures
and their potential for exploring new applications remains a challenge for future research. The
technological progress is accompanied and stimulated by an ever-improving understanding of
the magnetic properties of nanostructures. For example, we now understand the crucial effect
of imperfections, which largely determine the hysteresis loop and the real-space realization
of magnetization processes. In addition to model calculations, full-scale simulations of real
structures are now on the horizon, and sophisticated experimental investigation and processing
techniques will ensure far-reaching qualitative and quantitative developments. In one sentence,
the future of the science and technology of magnetic nanostructures looks promising.
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Appendix. Magnetic materials

Traditionally, magnetic materials are classified by their magnetic coercivity or hardness. The
term is historical and refers to iron, where the addition of carbon increases not only the
mechanical hardness (steel) but also the coercivity. In descending order, the hardness gives
rise to a classification into hard magnets (permanent magnets), recording media and soft
magnets. Tables A.1–A.4 show typical intrinsic and extrinsic parameters compiled from
different sources [8, 89, 165, 206].

A.1. Permanent magnets

These have a wide range of applications, for example in electromotors, loudspeakers,
windshield wipers, locks, microphones and hard-disk drives, and as toys and refrigerator
magnets [8, 206]. Until the first half of the 20th century, most permanent magnets were
made from steel. Steel magnets are now obsolete, because their low coercivities and energy
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Table A.1. Intrinsic properties of some rare-earth free alloys and oxides. Ms and K1 are room-
temperature values.

Substance µ0 Ms (T) TC (K) K1 (MJ m−3) Structure

Fe 2.15 1043 0.048 Cubic bcc
Co 1.76 1388 0.53 Hex. hcp
Ni 0.62 631 −0.0048 Cubic fcc
PtCo 1.00 840 4.9 Tetr. CuAu (I)
PtFe 1.43 750 6.6 Tetr. CuAu (I)
PdFe 1.37 760 1.8 Tetr. CuAu (I)
MnAl 0.62 650 1.7 Tetr. CuAu (I)
MnBi 0.78 630 1.2 Hex. NiAs
Fe3O4 0.60 858 −0.011 Cubic MgAl2O4

MnFe2O4 0.52 573 −0.0028 Cubic MgAl2O4

CoFe2O4 0.50 793 0.270 Cubic MgAl2O4

NiFe2O4 0.34 858 −0.0069 Cubic MgAl2O4

CuFe2O4 0.17 728 −0.0060 Cubic MgAl2O4

MgFe2O4 0.14 713 −0.0039 Cubic MgAl2O4

BaFe12O19 0.48 723 0.330 Hex. M ferrite
SrFe12O19 0.46 733 0.35 Hex. M ferrite
PbFe12O19 0.40 724 0.22 Hex. M ferrite
BaZnFe17O27 0.48 703 0.021 Hex. W ferrite
CrO2 0.56 390 0.025 Tetr. TiO2

NiMnO3 0.13 437 −0.26 Hex. FeTiO3

γ -Fe2O3 0.47 863 −0.0046 Cubic disordered spinel

products made it necessary to resort to cumbersome horseshoe shapes, but the high saturation
magnetization of Fe65Co35 (2.43 T) and its pronounced temperature stability continue to
be exploited in alnico-type magnets. The moderate coercivity of those magnets originates
from the shape anisotropy of elongated Fe65Co35 particles embedded in a Ni–Al matrix.
Magnetocrystalline anisotropy is also exploited in hexagonal ferrites such as BaFe12O19, which
are widely used to produce cheap ceramic magnets with coercivities of up to about 0.3 T (3
kOe), and in tetragonal L10 magnets such as PtCo. However, most high performance magnets
are now made from rare-earth transition-metal intermetallics such as Nd2Fe14B [229–231,351]
and SmCo5 [26], where the rare-earth sublattice provides sufficient anisotropy to realize broad
hysteresis loops with coercivities of the order of 1 T (0.8 MA m−1). These magnets consist of
3d atoms, ensuring a high magnetization and a high Curie temperature, and rare-earth atoms,
ensuring a high uniaxial anisotropy.

A.2. Magnetic recording media

These are used in computer and audio-visual technology, for example in magnetic tapes
and for data storage in hard disk drives [32, 33, 35, 352]. Semihard materials used in
storage media exhibit rectangular hysteresis loops having coercivities of the order of 0.1 T
(80 kA m−1). The moderate coercivity and the rectangular loop shape ensure the stability of
the stored information without requiring bulky writing facilities. Traditional storage media
are made using materials such as granular Fe2O3 and CrO2. Advanced high-density recording
media, characterized by more than 10 Gb in−2(1.55 Gb cm−2), are based on materials such
as Co–Cr–Pt–B, where the Pt improves the anisotropy. Other classes of materials, such as
rare-earth transition-metal nanocomposite films [39, 352], are also being considered. Some
limitations in magnetic recording are the present use of longitudinal or in-plane recording
media, with spin configurations similar to figure 10(f), and thermal instabilities at ultrahigh
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Table A.2. Intrinsic properties of some magnetic materials containing rare earths or yttrium. Ms

and K1 are room-temperature values.

Substance µ0 Ms (T) TC (K) K1 (MJ m−3) Structure

NdCo5 1.23 910 0.7 Hex. CaCu5

SmCo5 1.07 1003 17.0 Hex. CaCu5

YCo5 1.06 987 5.2 Hex. CaCu5

Pr2Fe14B 1.41 565 5.6 Tetr. Nd2Fe14B
Nd2Fe14B 1.61 585 5.0 Tetr. Nd2Fe14B
Sm2Fe14B 1.49 618 −12.0 Tetr. Nd2Fe14B
Dy2Fe14B 0.67 593 4.5 Tetr. Nd2Fe14B
Er2Fe14B 0.95 557 −0.03 Tetr. Nd2Fe14B
Y2Fe14B 1.36 571 1.06 Tetr. Nd2Fe14B
Sm(Fe11Ti) 1.14 584 4.9 Tetr. ThMn12

Y(Fe11Ti) 1.12 524 0.89 Tetr. ThMn12

Y(Co11Ti) 0.93 940 −0.47 Tetr. ThMn12

Nd2Co17 1.39 1150 −1.1 Rhomb. Th2Zn17

Sm2Co17 1.20 1190 3.3 Rhomb. Th2Zn17

Dy2Co17 0.68 1152 −2.6 Rhomb. or hex.
Er2Co17 0.91 1186 0.72 hex. Th2Ni17

Y2Co17 1.25 1167 −0.34 Rhomb. or hex.
Sm2Fe17 1.17 389 −0.8 Rhomb. Th2Zn17

Sm2Fe17N3 1.54 749 8.9 Rhomb. Th2Zn17

Y2Fe17 0.84 320 −0.4 Hex. Th2Ni17

Y2Fe17N3 1.46 694 −1.1 Hex. Th2Ni17

Y3Fe5O12 0.16 560 −0.00067 Cubic (garnet)
Sm3Fe5O12 0.17 578 −0.0025 Cubic (garnet)
Dy3Fe5O12 0.05 563 −0.0005 Cubic (garnet)

Table A.3. Micromagnetic parameters at room temperature. (The values for Fe and Ni are uniaxial
estimates.)

Material µ0 Ms (T) A (pJ m−1) K1 (MJ m−3) δ (nm) γ (mJ m−2) lex (nm) κ Rsd (nm) Ha (T)

Fe 2.15 8.3 0.05 40 2.6 1.5 0.12 6 0.06
Co 1.76 10.3 0.53 14 9.3 2.0 0.46 34 0.76
Ni 0.61 3.4 −0.005 82 0.5 3.4 0.13 16 0.03
BaFe12O19 0.47 6.1 0.33 14 5.7 5.9 1.37 290 1.8
SmCo5 1.07 22.0 17 3.6 77 4.9 4.35 764 40
Nd2Fe14B 1.61 7.7 4.9 3.9 25 1.9 1.54 107 7.6

Table A.4. Extrinsic properties of some typical magnets.

Material µ0 Mr (T) µ0 H c (T) (B H )max (kJ m−3)

Cobalt steel (hard magnetic) 1.0 0.025 8
Annealed iron (soft magnetic) 1.0 0.0001 0.04
Sintered hexagonal ferrite 0.39 0.30 28
Anisotropic alnico 1.30 0.07 50
Metal-bonded SmCo5 0.92 1.88 175
Polymer-bonded SmCo5 0.58 1.00 60
Sintered Sm2Co17/SmCo5 1.08 1.0 225
Sintered Nd–Fe–B 1.33 1.6 400
Polymer-bonded Nd–Fe–B 0.55 0.75 48
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recording densities (up to about 100 Gb in−2). These problems can be tackled by suitable
nanostructuring, using perpendicular recording [37] and highly anisotropic media [35] to avoid
thermal demagnetization.

A related field is magneto-optical recording using thin-film materials such as amorphous
Tb22Fe66Co12 [33]. The materials are ferrimagnetic, with nearly equal transition-metal and
rare-earth sublattice magnetizations MR and MT , respectively. The materials’ magnetoelastic
anisotropy is comparatively small, but due to Hc ≈ 2K1/µ0 Ms the nearly compensated
magnetization, Ms = |MR − MT | ≈ 0, ensures a sufficiently high coercivity. Note that the low
net magnetization has no negative impact on the magneto-optical reading of the information,
because the two sublattices have different Kerr-response characteristics. The magnetic and
magneto-optical properties of the films can be tuned by choosing suitable rare-earth and
transition-metal stoichiometries, and the information can be stored by thermomagnetic and
Curie temperature writing involving Tk and TC , respectively [33, 353].

A.3. Soft magnetic materials

These are widely used for flux guidance in permanent-magnet and other systems, in transformer
cores, for high-frequency and microwave applications, and in recording heads. Typical
requirements are a low coercivity, a high initial permeability dM/dH and low high-frequency
losses [89, 159, 354]. Iron-based metallic magnets have long been used as soft magnetic
materials. Examples are pure iron, Fe–Si Fe50Co50 and permalloy (Ni80Fe20). For example,
permalloy has an anisotropy of about 0.15 kJ m−3, an anisotropy field of about 0.4 mT and
a typical coercivity of about 0.04 mT 0.4 Oe. More recently, amorphous and nanostructured
metals have attracted much attention as soft magnetic materials. Essentially, they have the
composition T100−x Zx(T = Fe, Co, Ni and Z = B, C, P, Zr, . . .) where x ≈ 10–20. Oxides,
such as simple ferrites (TFe2O4, where T = Mn, Fe, Ni, Zn), and garnets (R3Fe5O12,
R = Y, Gd, . . .) have a ferrimagnetic spin structure and, therefore, a rather low magnetization.
However, their comparatively large resistivity suppresses eddy-current losses and makes
them suitable for high-frequency applications, for example in antennas and microwave
devices [33, 89].

Another important application of soft materials is inductive and magnetoresistive recording
heads [33]. The function of inductive head materials is to realize flux closure for reading and
writing on recording media. Typical materials are Ni80Fe20 (permalloy, Hc = 0.01–0.05 mT),
hot-pressed Ni–Zn and Mn–Zn ferrites (Hc = 0.02 mT); Fe–Si–Al (sendust, Hc = 0.025 mT),
as well as Fe–Ti–N and Fe–Rh–N alloys [33]. Magnetoresistive read heads exploit the AMR
due to the spin-dependent scattering of conduction electrons by magnetic atoms or, more
recently, the GMR effect exploiting the different Fermi-level spin-up and spin densities of
the involved components. Almost all metallic ferromagnets exhibit GMR, but soft magnetic
materials—such as permalloy—are easier to switch.

Tables A.1–A.3 show the magnetic moment m, the spontaneous magnetization Ms ,
the Curie temperature TC and first uniaxial anisotropy constant K1 for some magnetic
materials [8, 354]. Not included are antiferromagnets, such as NiO, GdFeO3 and Ti2O3.
The metastable compound γ -Fe2O3 has a moment of 2.5 µB per formula unit and a Curie
temperature of 950 K, but above about 400 ◦C it transforms into α-Fe2O3 [89].
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[171] Dowben P A, Hürsch W and Landolt M 1993 J. Magn. Magn. Mater. 125 120
[172] Jones W and March N H 1973 Theoretical Solid State Physics vol 1 (London: Wiley)
[173] Skomski R, Waldfried C and Dowben P A 1998 J. Phys.: Condens. Matter 10 5833
[174] Dowben P A 2000 Surf. Sci. Rep. 40 151
[175] Cyrot-Lackmann F 1968 J. Phys. Chem. Solids 29 1235
[176] Heine V 1980 Solid State Phys. 35 1
[177] Sutton A P 1993 Electronic Structure of Materials (Oxford: Oxford University Press)
[178] Desjonquères M C and Spanjaard D 1993 Concepts in Surface Physics (Berlin: Springer)
[179] Sandratskii L M 2001 Phys. Rev. B 64 134402
[180] Duc N H, Hien T D, Givord D, Franse J J M and de Boer F R 1993 J. Magn. Magn. Mater. 124 305
[181] Ashcroft N W and Mermin N D 1976 Solid State Physics (Philadelphia, PA: Saunders)
[182] Skomski R 1999 Europhys. Lett. 48 455
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[212] Sato Turtelli R, Sinnecker J P, Grössinger R and Vázquez M 1995 J. Appl. Phys. 78 2590
[213] Johnson M T, Bloemen P J H, den Broeder F J A and de Vries J J 1996 Rep. Prog. Phys. 59 1409
[214] Victora R H and McLaren J M 1993 Phys. Rev. B 47 11583
[215] Chuang D S, Ballentine C A and O’Handley R C 1994 Phys. Rev. B 49 15084
[216] Gay J G and Richter R 1986 Phys. Rev. Lett. 56 2728
[217] Bruno P 1989 Phys. Rev. B 39 865
[218] Daalderop G H O, Kelly P J and Schuurmans M F H 1990 Phys. Rev. B 42 7270
[219] Wang D-S, Wu R-Q and Freeman A J 1993 Phys. Rev. B 47 14932
[220] Eisenbach M, Györffy B L, Stocks G M and Újfalussy B 2002 Phys. Rev. B 65 144424-1
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[246] Becker R and Döring W 1939 Ferromagnetismus (Berlin: Springer)
[247] Chikazumi S 1964 Physics of Magnetism (New York: Wiley)
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